

Blayney MPS

Civil Design Report

130607-JAC-CV-RPT-1003 | 4 29 May 2024

NSW Health Infrastructure

Jacobs

Civil Design Report

Project No.	IA228800
Document Title	Civil Design Report
Document Number	130607-JAC-CV-RPT-1003
Revision	4
Date	29 May 2024
Client Name	NSW Health Infrastructure
Project Manager	Mihaela Serban
Author	Dana Silang

Document history and status

Revision	Date	Description	Author	Checked	Reviewed	Approved
Draft	31/05/23	Design Development – Civil Works Report	D. Silang	K. Lau	M. Serban	M. Serban
1	06/07/23	75% Design Development – Civil Report	D. Silang	K. Lau	M. Serban	M. Serban
2	09/08/23	For Tender – Civil Report	D. Silang	K. Lau	M. Serban	M. Serban
3	10/08/23	For Tender – Civil Report Reissue	D. Silang	K. Lau	M. Serban	M. Serban
4	29/05/24	Revised for HI	-	K.Lau	K.Lau	M.Serban

Jacobs Group (Australia) Pty Ltd

Level 7, 177 Pacific Highway North Sydney, NSW 2060 PO Box 632 North Sydney, NSW 2059 Australia T +61 2 9928 2100 F +61 2 9928 2444 www.jacobs.com

Copyright Jacobs Group (Australia) Pty Ltd © 2023.

All rights reserved. The concepts and information contained in this document are the property of the Jacobs group of companies. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright. Jacobs, the Jacobs logo, and all other Jacobs trademarks are the property of Jacobs.

NOTICE: This document has been prepared exclusively for the use and benefit of Jacobs' client. Jacobs accepts no liability or responsibility for any use or reliance upon this document by any third party.

Executive Summary

The Blayney MPS is a small rural health facility located in the Southern Sector of Western New South Wales (NSW). It is located on the corner of Osman Street and Martha Street.

The Blayney MPS redevelopment will aim to provide:

- Residential aged care accommodation providing care to aged care residents with high care needs including clients with dementia who have been assessed as suitable for an MPS. Blayney MPS also provides respite care for low and high care residents.
- Inpatient services that will provide low level acute care to patients including palliative care in line with the agreed role delineation.
- Emergency services including stabilisation and management in preparation for admission or transfer of care in line with level 1 role delineation.
- Imaging services including general x-ray with a visiting Radiographer onsite from the Cowra Health Service two days a week.
- Western NSW LHD community health, outpatient/ambulatory services and Hospital in the Home (HiTH)

The purpose of this report is to document the civil components for the Blayney MPS redevelopment. These consist of access roads, pavement, drainage, and earthworks.

Contents

Εχεςι	utive S	ummary	i
Acro	nyms a	and abbreviations	1
1.	Exist	ing Conditions	2
	1.1	Location	2
	1.2	Geotechnical	2
		1.2.1 Geology	2
		1.2.2 Soil Contamination	2
		1.2.3 Groundwater	3
	1.3	Stormwater	3
		1.3.1 Flooding	
2.	Prop	osed Development	5
	2.1	Civil Works	5
		2.1.1 Civil Design Criteria	5
		2.1.2 Earthworks	
		2.1.3 Stormwater	6
		2.1.4 Groundwater	6
		2.1.5 Flooding (PMF)	7
		2.1.6 Access Roads	7
		2.1.7 Pavement Design	9
	2.2	Structural Works	

Appendices

Appendix A. Civil Drawings	11
Appendix B. Earthworks	12
Appendix C. Stormwater Drainage Memo	13
Appendix D. Pavement Design Memo and Calculations	14
Appendix E. Vehicle Access Strategy Annotation	15

Tables

Table 1: Approved Design Vehicle Types	5
Table 2: Proposed Building Levels	
Table 3: Geometric Design Criteria - Access Roads	
Table 4: Geometric Design Criteria - Shared Path	
Table 5: Cut/Fill Summary (Based on Existing Levels)	
Table 6: Design Traffic Loading	

Figures

Figure 1: Existing Hospital Plan (Source: NBRS)	2
Figure 2: Existing Sub-Catchments and Discharge Points	

Acronyms and abbreviations

[ACRONYM]	[Full Name]
St	Street
PMF	Probable Maximum Flood
LDF	Lane Distribution Factor
DF	Direction Factor
RAC	Residential Aged Care
MPS	Multi-Purpose Service
FPL	Floor Planning Level
FFL	Finish Floor Level
AEP	Annual Exceedance Probability Existing Conditions

1. Existing Conditions

1.1 Location

The existing hospital site is located on the corner of Martha Street and Osman Street. To the south of the hospital is Martha Street which continues as Mid Western Highway (A41). To the West of the hospital is Lee Hostel with access to Queen Street and residential buildings on the East and North of the site.

The main hospital entrance is on Osman Street with an existing carpark available on site. There is also on-street parking on Osman St adjacent to the hospital. The site generally slopes from West to East.

Figure 1: Existing Hospital Plan (Source: NBRS)

1.2 Geotechnical

1.2.1 Geology

According to the Desktop Preliminary (Stage 1) Site Investigation report (Ref: E35521PTrpt) by JK Environments, the Blayney MPS site is found to be underlain by Wombiana Formation Shale, typically consisting of buff to light coloured shale, siltstone, limestones, and fine-grained sandstones and marble. The Blayney volcanics are located approximately 305m to the south-west, which provide potential for asbestos to naturally occur. Further to the investigation, the site has been reported to be located within the Vittoria-Blayney soil landscape which are considered to have moderate erodibility with some higher local occurrences and low salinity.

1.2.2 Soil Contamination

Based on reviews and inspections made by JK Environments in their Desktop Preliminary (Stage 1) Site Investigation report (Ref: E35521PTrpt), JK Environments is of the opinion that there is potential for site contamination. There were potential contamination sources found such as fill material from unknown origin, onsite fuel storage, use of pesticides, hazardous building materials, naturally occurring asbestos, and off-site land uses. JK Environments state that the historical land uses and potential sources of contamination would

Civil Design Report

not prohibit the proposed development. However, further investigation of the contamination conditions is required based on the potential contamination sources identified and potential for contamination in future.

1.2.3 Groundwater

Based on the geotechnical investigation report, groundwater was found 0.85m below ground level at BH15 at the south-western corner of the development area, with groundwater seepage encountered during or on completion of various boreholes, ranging from depths between 0.85m to 1.4m.

1.3 Stormwater

The subject site of Blayney Hospital has three main sub-catchments discharging to three existing discharge points. Two of the discharge points are in Osman St and one discharge point to Queens St existing drainage system (shown in Figure 2 below).

Figure 2: Existing Sub-Catchments and Discharge Points

Stormwater runoff from the subject site discharging into Osman Street and Queen Street existing drainage systems is conveyed via the existing drainage pit and pipe systems to Stillingfleet Street existing drainage systems. This then discharges into a wetland located at the intersection of Stillingfleet Street and Lower Farm Street for detention and treatment before ultimately discharging to Belubula River.

1.3.1 Flooding

The following studies have been used for flood assessment:

- Blayney Flood Study -Flood Study Report prepared for Blayney Shire Council dated 15th June 2015 by Jacobs.
- Floodplain Risk Management Study and Floodplain Risk Management Plan for Blayney Final, prepared for Blayney Shire Council dated December 2016 by Jacobs
- Addendum to Blayney Flood Study- Update to Austalian Rainfall and Runoff 2019 Guidelines for Blayney Shire Council dated 10th February 2022 by Storm.

The PMF is defined in the Council flood study as the largest flood that could conceivably occur at a particular location, usually estimated from probable maximum precipitation coupled with the worst flood producing catchment conditions. Generally, it is not physically or economically possible to provide complete protection for the site against such an event.

The hospital side is currently under the PMF level with surrounding roads and adjacent buildings also within the flood zone. The overall building level of the hospital will need to be raised over 1m to meet the PMF requirements, with the surrounding areas also raised to meet the building level, which will require extensive earthworks. All access roads to the hospital will be blocked during the PMF event. Social and economic value will need to be considered should building levels be raised to PMF.

Typically, residential development would generally be based around the 1% AEP flood event plus an appropriate freeboard (typically 0.5m). The council is responsible for the determination of appropriate planning and development controls, including FPLs, to manage future flood risk to an acceptable level based on social, economic, and ecological, as well as flooding considerations. These controls should be cognisant of the relevant regional planning and any associated controls. The council is also responsible for responsible for risks of flooding and providing acceptable levels of safety within the community in accordance with the Emergency Servicing Act 1939.

Finished Surface Level (FSLs) for the building has been adopted from Blayney Flood Study, however council consultation and acceptable levels will need to be confirmed including emergency access during extreme flood events, and safe and orderly egress from development.

2. Proposed Development

2.1 Civil Works

2.1.1 Civil Design Criteria

2.1.1.1 Traffic Requirements

The main site access light vehicles for patients and visitors will continue to remain on Osman St with separated entry and exits. The existing main entrance driveway will be converted to entry access only, with the other Osman St access widened as an exit. The Osman St access to site will only cater for cars and ambulances.

Larger vehicles that require access to the hospital site such as servicing, waste and the fire brigade will utilise the Queen Street access. This will be a two-way access for entry and exit of the larger vehicles only as it provides the most direct and convenient access to the site area where the loading dock, ambulance bay and booster assembly will be located. The single-lane driveway to the ambulance station on the western side of the hospital will be retained.

For vehicle access strategy annotation containing traffic flows and vehicle type access provided by SCT Consulting, refer to Appendix E.

2.1.1.2 Vehicle Types

The vehicles that have been assessed to access the hospital site include the following:

Vehicle Type	Size (Length)	Access Points/Locations
Ambulance (non-bariatric)	6.5m	Oldham Place (west of hospital) entrance, Osman St entrance, Queen St exits only,
SRV	6.4m	Entire site accessible
HRV	12.5m	Queen St entry/exit only
MRV	8.8m	Queen St entry/exit., Osman St exit only
B99 Vehicle (Light Vehicle)	5.2m	Existing and new carparks, reception, Osman St entry and exit

Table 1: Approved Design Vehicle Types

2.1.1.3 Turning Paths

A turning path assessment has been undertaken and determined that the layout for each intersection and access road is adequate for their corresponding design vehicle. The main area where critical care with turning paths is evident is at the Queen St entrance/exit. Due to the two-way access at Queen St and the traffic being an SRV vehicle size at minimum, it will require at least a 3-point turn to change to the opposite direction.

The civil drawings in Appendix A highlight the turning radius path for each design vehicle.

2.1.2 Earthworks

The bulk cut and fill quantities based on the design surface over the natural surface only is found in Section 2.1.6.3 of this report. The natural surface does not consider pavement boxing or foundation excavations. There is a significant amount of net fill required due to matching the surrounding landscaping to the building levels.

The proposed levels are as below:

Project Area	1% AEP (plus freeboard)	PMF
Residential Aged Care (RAC)	874.65 AHD	875.65 AHD
Health One building	874.20 AHD	875.25 AHD

Table 2: Proposed Building Levels

The finished surfaced level is currently designed for the 1% AEP plus 500mm freeboard. Noting that the 1% AEP is based on the existing council flood maps, further discussion with council and flood modelling may be required for approval of the finished floor levels.

The RAC building requires approximately 1.3m cut in the south-west corner of the site and the Health One building requires approximately 1.2m fill on the north-east corner of the building adjacent the boundary.

Further information about the proposed earthworks can be found in the Earth Works Preliminary Analysis in Appendix B, which includes earthwork heatmaps which was used to further development the design.

2.1.3 Stormwater

2.1.3.1 Stormwater Drainage

The stormwater drainage strategy for the proposed development will utilise the existing Council stormwater drainage systems to carry runoff from the site to the existing wetlands for detention and water quality treatment at Stillingfleet St and Lower Farm St. The proposed drainage strategy is to install raingardens in the proposed carpark area of the hospital site to treat runoff (from carpark only) and provide two 10,000L rainwater tanks for stormwater harvesting and irrigation reuse of landscape areas. The provision of rainwater tanks and raingarden/biorention trench for the new carpark endeavours to enhance the use of water sensitive urban design elements and reduce pollutant loads carried by the stormwater runoff from the hospital site to the existing wetlands.

The stormwater drainage strategy drawing and memo for information is in Appendix A and Appendix C, respectively.

2.1.3.2 Erosion and Sediment Control

The proposed erosion and sediment control plan will be conducted in three stages throughout the construction of the new hospital site. The control measures that will be put in place such as barrier fence, sediment fence, catch drains, gravel filters, and an area for the stockpile will help mitigate and prevent soil erosion during construction and other sediments from the construction site washing into gutters, drains, and waterways.

The new RAC building will be required to remain accessible across all the stages of construction to allow for patients, staff, and visitors to enter and exit.

For the detailed construction staging and erosion and sediment control plans, refer to Appendix A.

2.1.4 Groundwater

The geotechnical investigation report recommends the installation of subsoil drains at a minimum of 0.3m below the subgrade levels to help manage the moisture seepage on the clay subgrade in the long term.

2.1.5 Flooding (PMF)

Jacobs has investigated the current PMF levels on Blayney Hospital based on the Blayney Shire Council Flood Study Report dated on the 15th of June 2015. The PMF depths range from 0.5m to 1m, using the latest survey level of RL 874.4 near RAC and RL 874.2 near Health One.

The PMF level is estimated to be at approximately RL 875.65 (RAC) and RL 875.25 (Health One) based on the flood depths indicated in the Jacobs Flood Study (2015).

Further PMF flood analysis is currently being carried out by GHD and findings from the assessment will be advised to Health Infrastructure.

2.1.5.1 Flood Mitigation Measures

The PMF flood analysis is currently being carried out by GHD and findings from the assessment will be advised to Health Infrastructure.

2.1.6 Access Roads

2.1.6.1 Land Configuration and Intersections

The Blayney MPS civil work consists of four one-way single lanes from Osman Street and Oldham Place entry access roads to the hospital. Exits include existing exit to Osman Street, and one two-way lanes from proposed/existing carpark to Queen St entry/exit. The following junctions along the hospital and carparks allow the right/left turn movement in the project site:

- Entry from Osman place Left turn only toward the hospital reception.
- Entry from Osman Street Right turn only toward the hospital reception and right turn movement to the proposed carpark.
- Exit from the hospital reception Left/Right turn toward the loading zone/exit to Osman Street/Carparks.

The approved route for design vehicles refers to Table 1 in section 2.1.1.2.

2.1.6.2 Design Standards and Guidelines

The proposed road geometry has been designed in accordance with the following standards and guidelines:

- WBC Strategic Alliance Guidelines for Engineering Works, 2009, Version 4
- Austroads Guide to Road Design Part 3: Geometric Design
- AS 2890.1:2004 Parking Facilities Off-Street Parking
- R0300 NSW RMS Kerb and Channel Series

Design Parameter	David Warren Road Value	Notes
Posted speed limit	30Km/h	
Design speed	40Km/h	

Table 3: Geometric Design Criteria - Access Roads

Civil Design Report

Design Parameter	David Warren Road Value	Notes
Minimum general traffic lane width	3.0m	Derived from WBC Strategic Alliance – Guidelines for Engineering Works, 2009, Version 4
Parking bay width	2.0m	Derived from WBC Strategic Alliance – Guidelines for Engineering Works, 2009, Version 4
Reaction time	1.5s	AustRoads Guide to Road Design – Part 3
Minimum K value crest	2.6	AustRoads Guide to Road Design – Part 3
Minimum K value sag	3.0	
Minimum Sight Distance	73m	Access Road assumption.
Minimum grade	0.5%	Derived from Drainage Design.
Maximum grade	2.5%	
Crossfall	-3% desirable	Typical values.
Cut and Fill batter slope	4H to 1 V on Fill 2H to 1V on Cut	Derived from Drainage Design.
Design Vehicle	6.5m Ambulance 6.4m SRV 12.5m HRV 8.8m MRV 5.2m B99	Assessed in the turning paths. Based on usage determined by Local Health District (LHD).
Verge widths	Match to existing	If there is no existing verge, refer to MIS06

Table 4: Geometric Design Criteria - Shared Path

Design Parameter	Value	Notes
Design speed	30km/h	
Minimum shared path width	2.5m	Design width measured.
Longitudinal Grade	Max 4.0%	Assumed.
Maximum Crossfall	Max 3.0%	Assumed.

2.1.6.3 Models and Quantities

Below is the current Cut and Fill quantities based on the latest road design:

Table 5: Cut/Fill Summary (Based on Existing Levels)

Cut/Fill Summary (Based on Existing Levels)							
Location	2D Area (m²)	Cut Volume (m³)	Fill Volume (m³)	Net Volume (m³)	Cut/Fill		
Footpath	403.456	90.92	16.04	-74.88	Cut		
Access Road	2741.579	238.85	797	558.15	Fill		
Parking Lot	560.177	182.14	0.01	-182.13	Cut		
Building	2838.703	670.67	309.05	-361.62	Cut		

Cut/Fill Summary (Based on Existing Levels)						
Landscaping	4455.039	902.82	801.17	-101.65	Cut	
Project Site (TOTAL)	10998.954	2085.4	1923.27	-162.13	Cut	

Note that cut/fill levels are for bulk earthworks only, allow for additional cut/fill volumes such as footings, pavement, tree removals and where residual soil is not encountered.

2.1.7 Pavement Design

The pavement design of the access road and new car park recommendations for Blayney Hospital follows the assumption that the traffic volume is 200 vehicles per day with 20% of heavy vehicles for access road and 5% for car parks. This is based on the advice provided by SCT Consulting from the review of Clinical Service Plan, the Workforce Plan, and an estimate of staff, visitors, and patients utilising the hospital grounds.

A granular pavement design with asphalt wearing course to match the existing pavement type of the access roads is considered for this project site due to the low traffic volume. However, for the loading dock area, a full depth asphalt pavement has been considered to carter for the turning movements of heavy vehicles that will be predominantly accessing the area.

It is to be noted that a consistent pavement thickness has been adopted for the access road and car park for ease of construction, due to their minimal difference in thickness. A 10mm tolerance has also been incorporated into the subbase layer in the granular pavement and the critical asphalt layer in the full depth asphalt pavement design.

2.1.7.1 Pavement Loadings

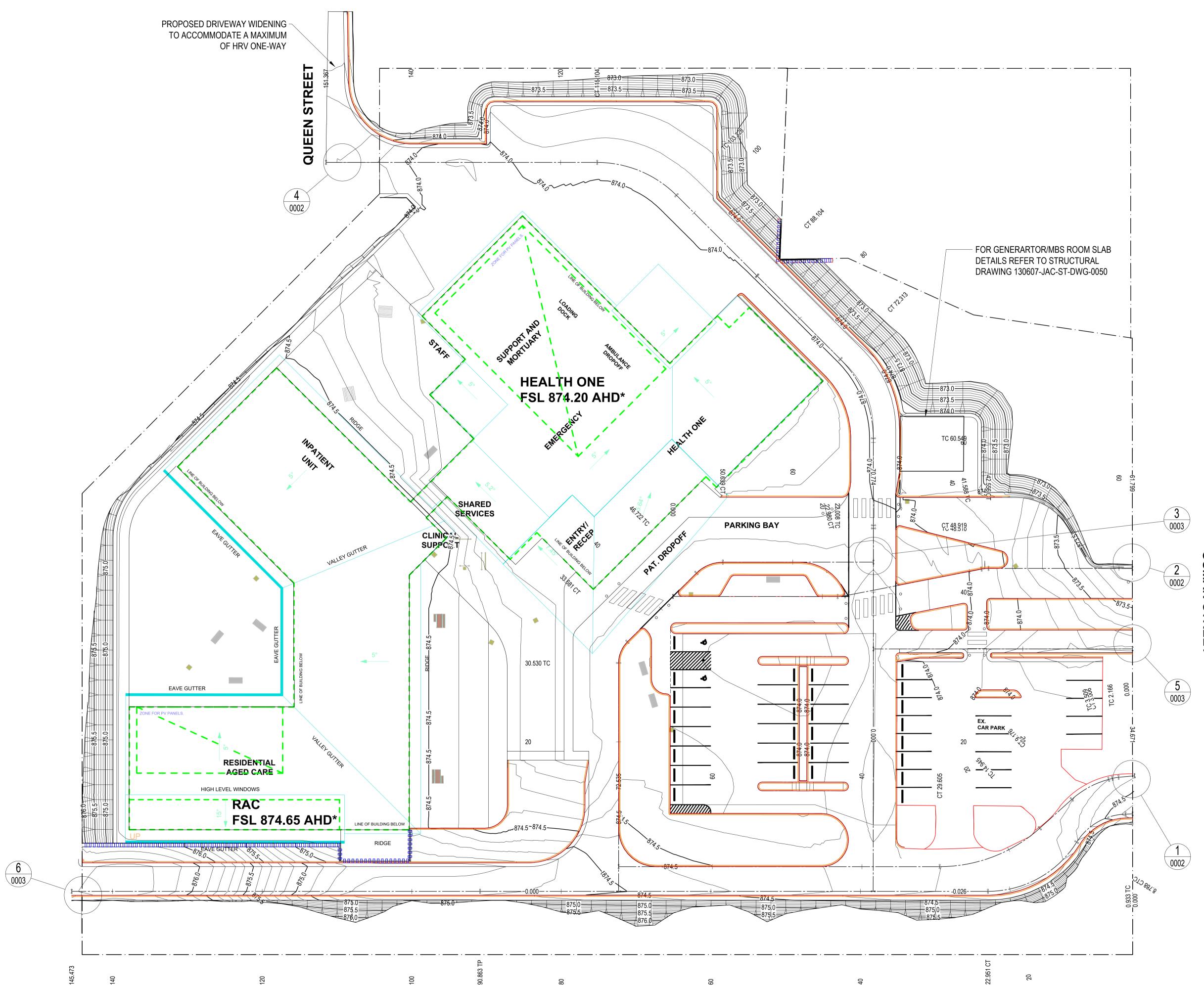
The adoption of an assumed 40-year design life coupled with the LDF of 1 and a DF of 1 for a one-way carpark and 0.5 for a two-way access road, the design traffic loading in Table 6 below is determined:

Description	AADT	HV (%)	Design Years	N _{DT} (HVAG)	DESA
Access Roads	200	20	40	735000	3.23 x 10⁵
Car Park	200	5	40	368000	1.62 x 10⁵
Loading Dock	200	20	40	2205000	9.70 x 10⁵

Table 6: Design Traffic Loading

For further pavement design information, data, and calculations refer to Appendix D.

2.2 Structural Works


The structural foundation system is based on advice from JK Geotechnics Geotechnical Investigation Report that recommends footings should be founded on still residual clays, at a minimum depth of 1m below the current ground levels of the site. With the requirement to raise the hospital building above PMF, there are two proposed options for structural below:

- 1. Raise building on engineered fill this will not significantly impact the existing structural solution with the impact on costing relating to additional engineered fill and the external wall can extend down to the existing ground level to retain full under building (e.g., no batter required adjacent to existing buildings during construction staging). The additional fill may have adverse impact on future flood studies.
- 2. Raise building on piers requires a significant change to ground floor structure and foundations including the costing of new structural elements. It is anticipated that fill will be required up to the edge of the building with retaining walls under building footprint. There are also possibilities of the ground

floor slab needing to be fire rated and maintenance issues from confined space void created under building.

For further details refer to Structures Design Development Report 130607-JAC-ST-RPT-1004.

Appendix A. Civil Drawings

LEGEND

	CIVIL WORKS
· ·	BOUNDARY
	ARCHITECTURAL LAYOUT
	CONTOUR LINES 0.5m INTERVALS
	CONTOUR LINES 0.1m INTERVALS
000000000000000000000000000000000000000	RETAINING WALL

NOTE: * FSL SUBJECTED TO APPROVAL

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

lssue

No.	Date	Description	Chkd
0	18.01.23	50% SCHEMATIC DESIGN ISSUE	K.L
1	17.02.23	100% SCHEMATIC DESIGN ISSUE	K.L
2	22.02.23	100% SCHEMATIC DESIGN ISSUE	K.L
3	10.05.23	DRAFT 50% DESIGN DEVELOPMENT	K.L
4	06.07.23	75% DESIGN DEVELOPMENT	K.L
5	09.08.23	FOR TENDER	K.L

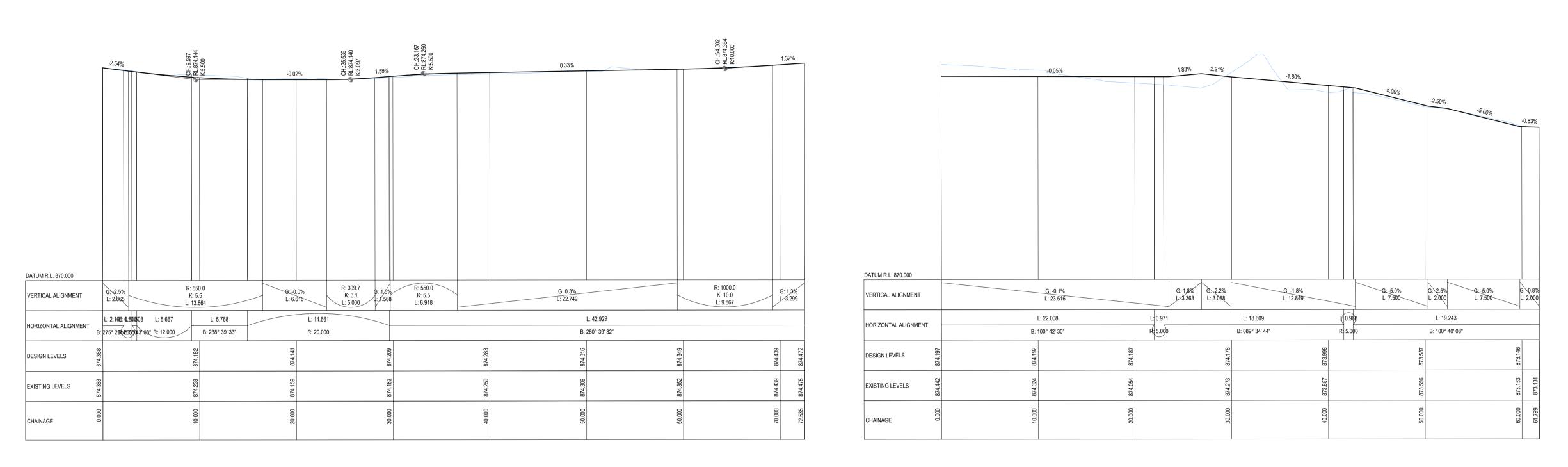
Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

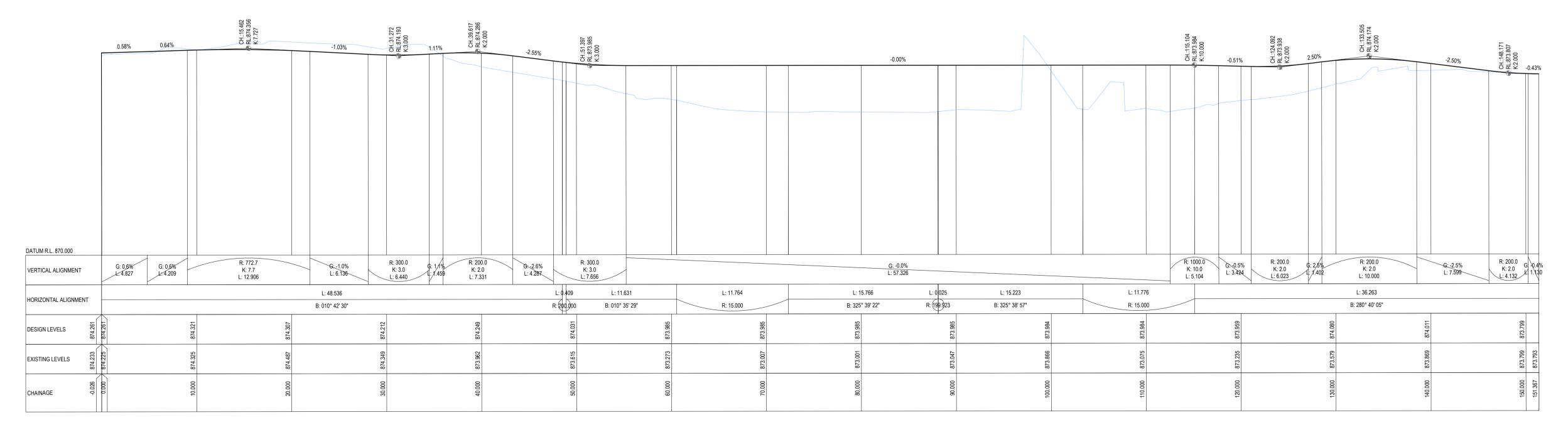
Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

5

Project Blayney HS


at 3 OSman St, Blayney NSW 2799

for Health Infastructure


Drawing Title CIVIL WORKS GENERAL ARRANGEMENT PLAN

1 : 250@ A1 Scale Drawing Reference Revision 130607-JAC-CV-DWG-0001 0 10 20 30 40 50 60 70 80 90 100

OSMAN STREET

4 LONGITUDINAL SECTION - MC40 0001 SCALE: H 1:250 V 1:50

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management

Genus Advisory Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

lssue No. Date 0 1 06.07.23 2 09.08.23

10.05.23

Description DRAFT 50% DESIGN DEVELOPMENT K.L 75% DESIGN DEVELOPMENT FOR TENDER

Chkd K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

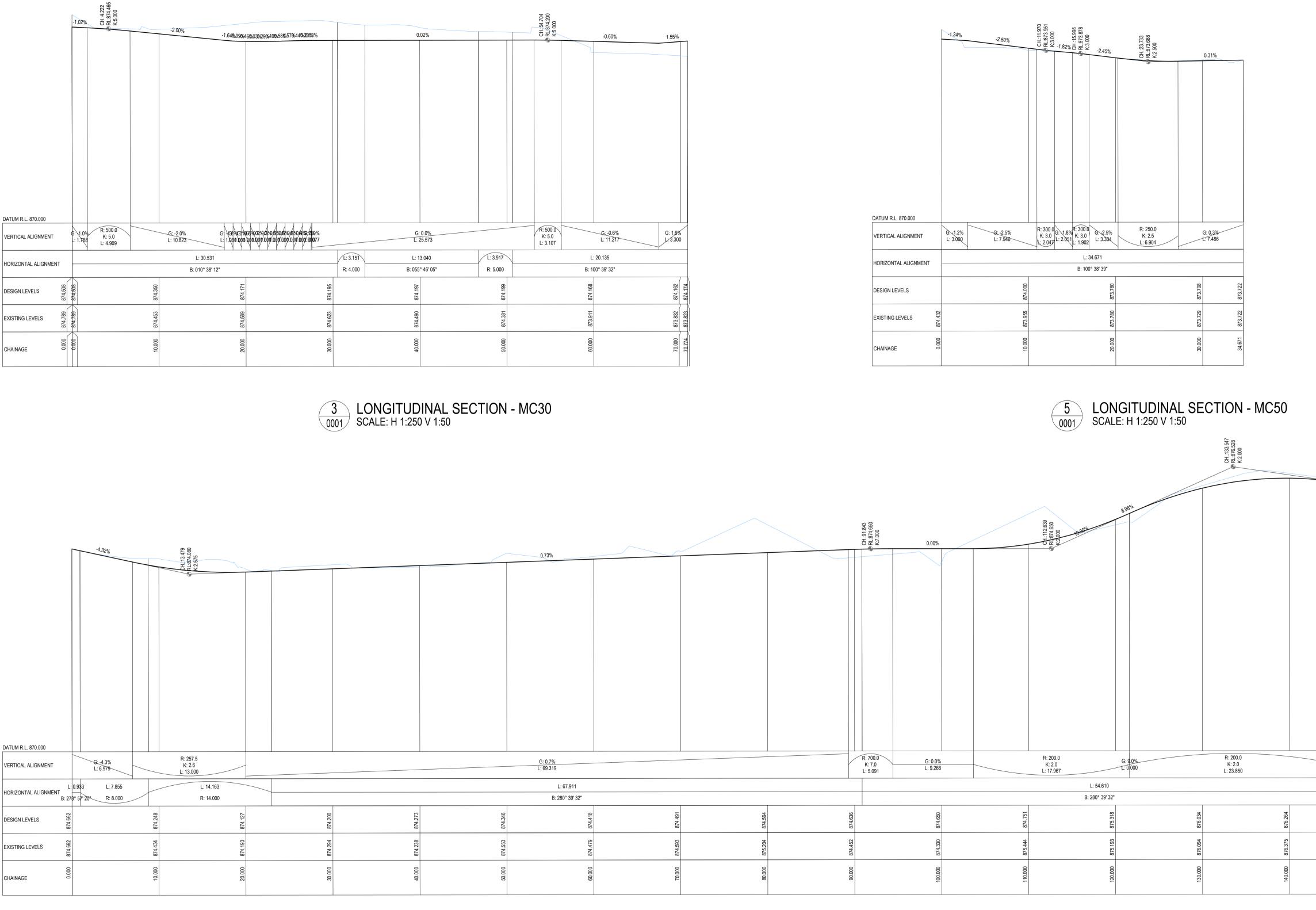
Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title **CIVIL WORKS** TYPICAL SECTIONS SHEET 1


Scale 1 : 250@ A1 Drawing Reference

130607-JAC-CV-DWG-0002

0 10 20 30 40 50 60 70 80 90 100

Revision

2

	-4.32%	CH :13.479 CH :13.479 K:2.575				0,73%	
		0					
DATUM R.L. 870.000		D. 057.5					
VERTICAL ALIGNMENT	G: 4.3% L: 6.979	R: 257.5 K: 2.6 L: 13.000				G: 0.7% L: 69.319	
	L: 0.933 L: 7.855	L: 14.163				L: 67.911	
HORIZONTAL ALIGNMENT B: 2	278° 57' 20" R: 8.000	R: 14.000				B: 280° 39' 32"	
DESIGN LEVELS	0,4,002 874.248	874.127	874.200	874.273	874, 346	874.418	;
EXISTING LEVELS	0/4.002 874.434	874.193	874.294	874.238	874.553	874.479	
CHAINAGE	0000	20.000	30.000	40.000	20.000	60.000 60.000	

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management

Genus Advisory Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE

Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

lssue

No. Date 0 10.05.23

Description DRAFT 50% DESIGN DEVELOPMENT K.L 1 06.07.23 75% DESIGN DE 2 09.08.23 FOR TENDER 75% DESIGN DEVELOPMENT

Chkd K.L K.L

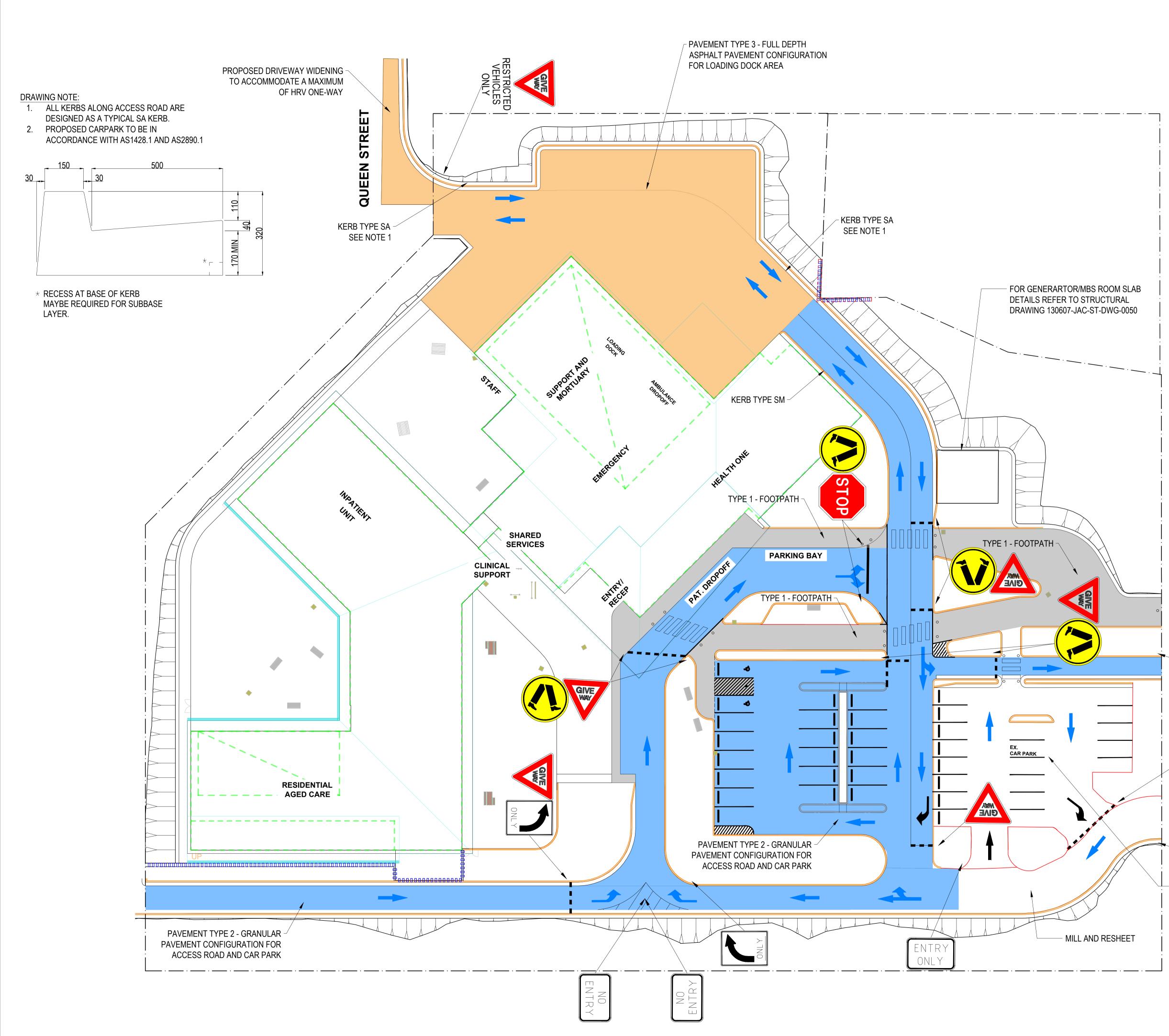
Building Services, Structural & Civil Consultants

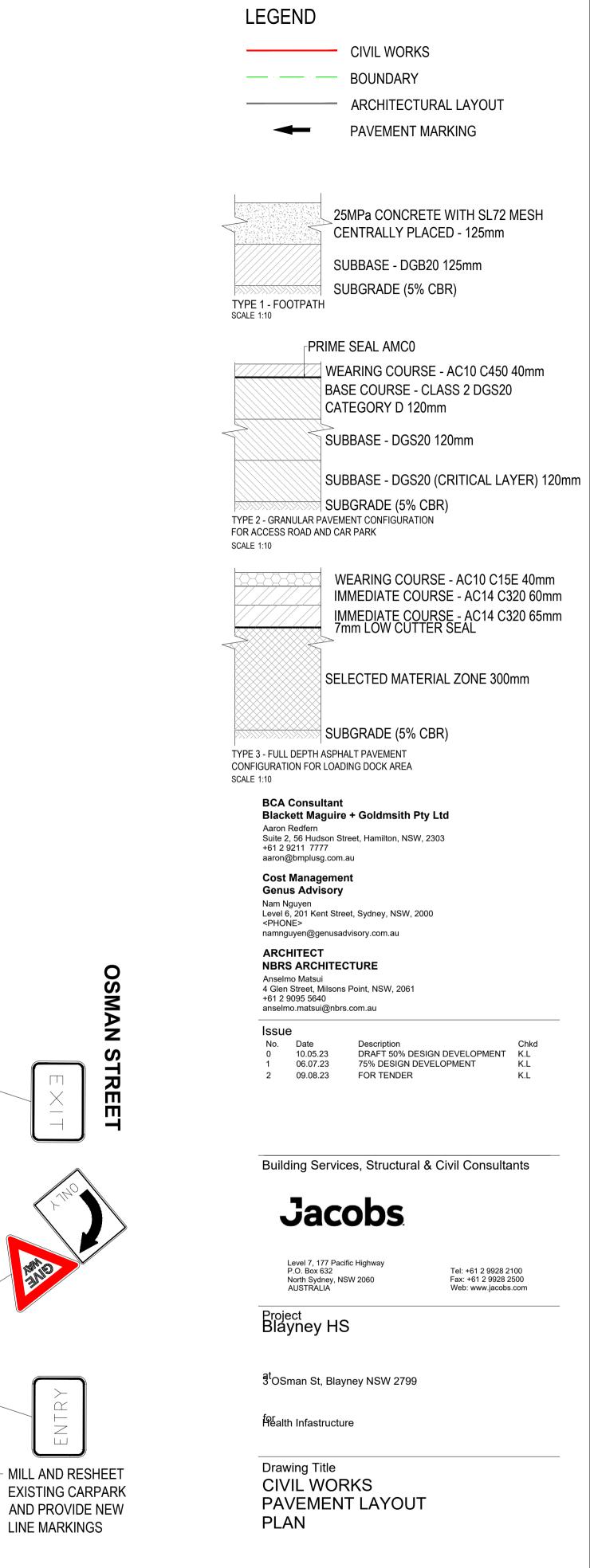
Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799


for Health Infastructure


Drawing Title CIVIL WORKS TYPICAL SECTIONS SHEET 2

∖ Scale 1 : 250@ A1 Drawing Reference 130607-JAC-CV-DWG-0003

0 10 20 30 40 50 60 70 80 90 100

Revision

Scale1 : 250@ A1Drawing Reference
130607-JAC-CV-DWG-0004Revision
2

ALL CONSTRUCTION MATERIALS AND WORKMANSHIP SHALL BE IN ACCORDANCE WITH THE COUNCIL RELEVANT TRNSW SPECIFICATION FOR THE WORKS TOGETHER WITH THE REQUIREMENTS OF ALL RELEVANT CODES OF PRACTICE REFERRED TO THEREIN AND THE REQUIREMENTS OF THE STATUTORY AUTHORIES WHERE APPLICABLE. 2. ALL GRATES ARE TO BE CLASS 'D' AND BICYCLE SAFE IN

ACCORDANCE WITH AS 3996 UNLESS NOTED OTHERWISE. 3. THE EXISTING STORMWATER DRAINAGE PIT AND PIPE

LAYOUT SHOWN ON THE DRAWINGS IS INDICATIVE ONLY. WHERE A NEW CONNECTION OR EXTENSION IS TO BE MADE TO ANY EXISTING PIT OR PIPE, ALL LOCATIONS, ORIENTATIONS AND REDUCED LEVELS AT THE PROPOSED CONNECTION POINT MUST BE SURVEYED AND CONFIRMED ON SITE BEFORE COMMENCING ANY WORK. CONDITION SURVEY AND ASSESSMENT ARE REQUIRED TO CONFIRM THE SUITABILITY OF THE EXISTING PIT AND PIPE PRIOR TO CONSTRUCTION SHOULD THE CONTRACTOR WISH TO REUSE THE EXISTING PIT AND PIPE SYSTEM WHERE APPLICABLE. HOWEVER IT IS ASSUMED THAT ALL PITS WILL BE MADE NEW UNLESS THE CONDITIONS ASSESSMENT ALLOWS OTHERWISE.

4. LOADING ASSESSMENT OF THE EXISTING DRAINAGE INFRASTRUCTURE TO BE CHECKED AND CONFIRMED PRIOR TO CONSTRUCTION.

5. ALL DRAINAGE PIPES ARE TO BE PRECAST REINFORCED CONCRETE PIPES TO AS/NZS 4058 AND RUBBER RING JOINTED SPIGOT AND SOCKET TYPE UNLESS NOTED OTHERWISE. CONCRETE PIPE INSTALLATION TO BE TYPE HS3 SUPPORT IN ACCORDANCE WITH TfNSW MD.R11.A01.B UNLESS NOTED OTHERWISE.

7. ALL NEW CONCRETE DRAINAGE PIPES PROPOSED TO BE TRANSVERSE ACROSS THE CARRIAGEWAY TO BE 3 MINIMUM.

P1-2

SURFACE

INLET PIT

P1-

SURFACE

INLET PIT

10KL RAINWATER

TANK. REFER TO

DRAWINGS FOR

HYDRAULIC

DETAILS

MODIFY EXISTING SURFACE INLET PIT-

TO MATCH DESIGN SURFACE LEVELS

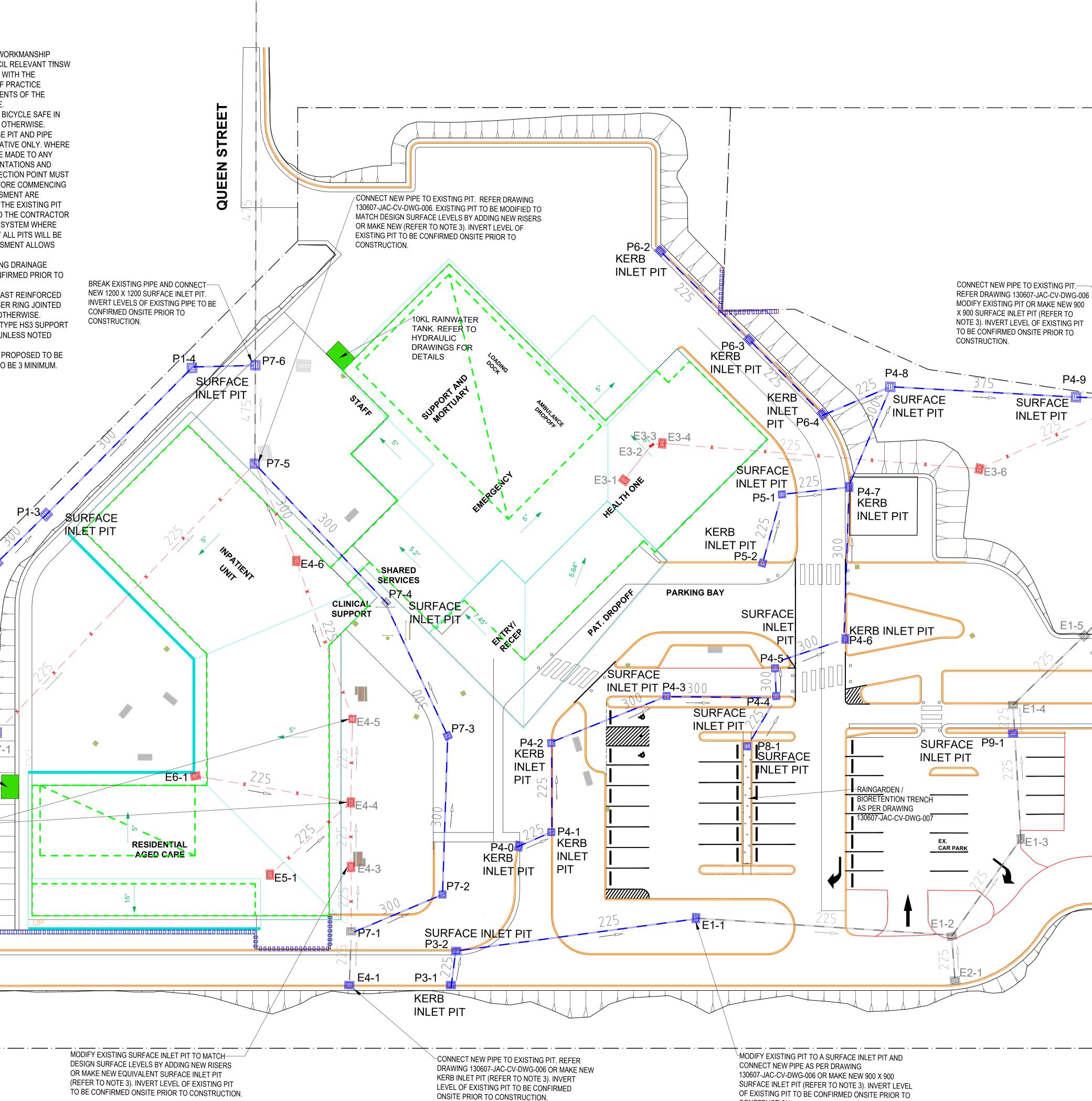
NEW EQUIVALENT SURFACE INLET PIT

(REFER TO NOTE 3). INVERT LEVEL OF

BY ADDING NEW RISERS OR MAKE

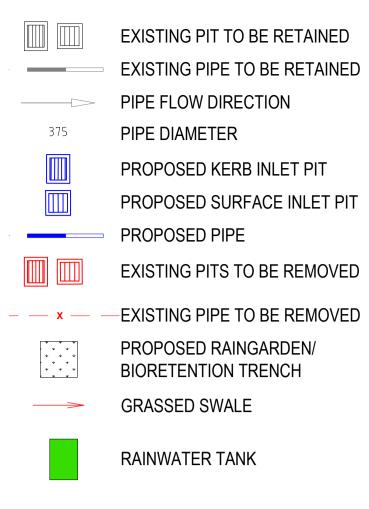
EXISTING PIT TO BE CONFIRMED

ONSITE PRIOR TO CONSTRUCTION.


BREAK EXISTING PIPE AND CONNECT

NEW 1200 X 1200 SURFACE INLET PIT.

INVERT LEVELS OF EXISTING PIPE TO


BE CONFIRMED ONSITE PRIOR TO

CONSTRUCTION.

CONSTRUCTION.

LEGEND

E3-7

E1-6 📖

OSMAN

STREET

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640

anselmo.matsui@nbrs.com.au

lssue No. Date 0 09.08.23 2

10.05.23 06.07.23

Description DRAFT 50% DESIGN DEVELOPMENT K.L 75% DESIGN DEVELOPMENT FOR TENDER

K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

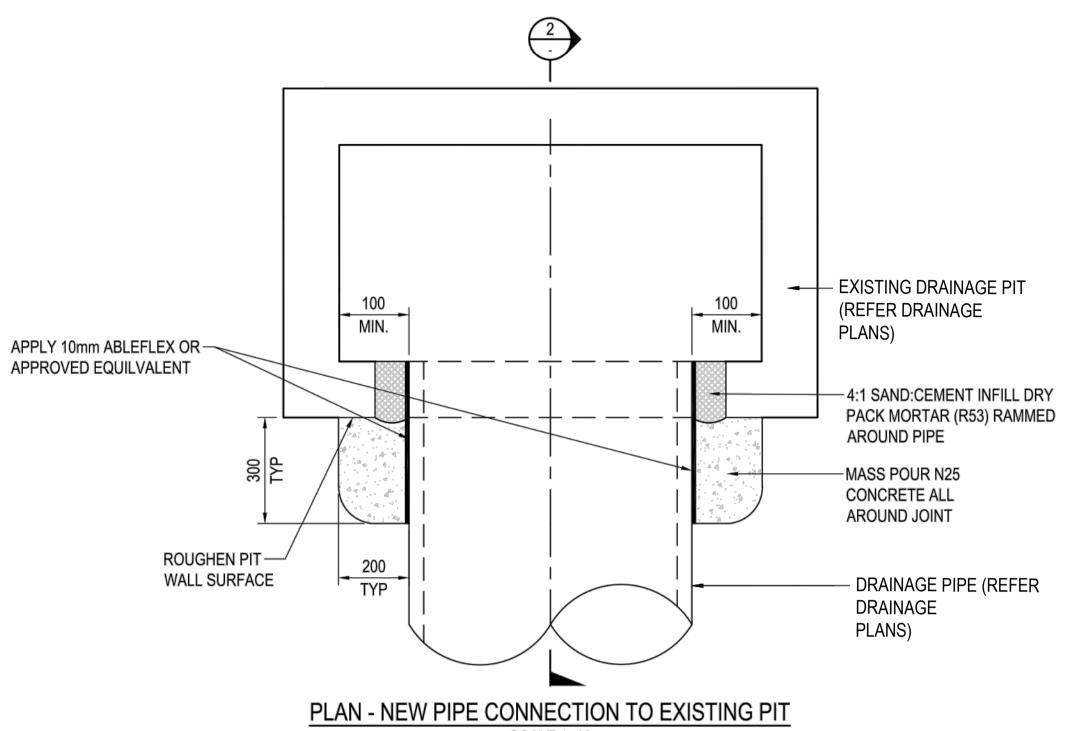
Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title CIVIL WORKS DRAINAGE LAYOUT PLAN


> 1 : 250@ A1 Scale

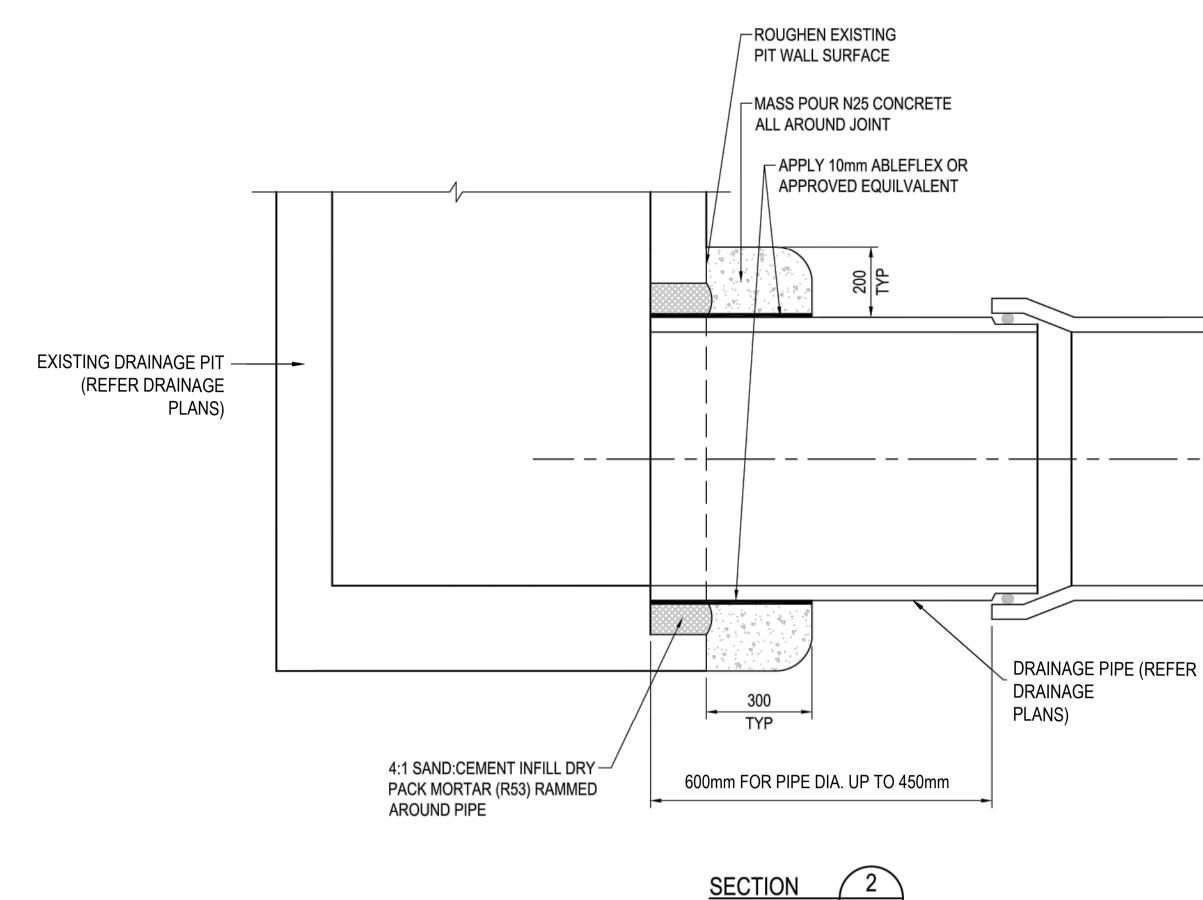
130607-JAC-CV-DWG-0005

0 10 20 30 40 50 60 70 80 90 100

Drawing Reference

Revision

SCALE 1: 10


						PIT SCH	EDULE						
Pit			SI	ETOUT	INTERNA	L	INLET		OUTLET		ΡΙΤ		
Name	ТҮРЕ	STANDARD REFERENCE DRAWING	EASTING	NORTHING	WD	LEN	DIA	INV LEV	DIA	INV LEV	SETOUT R		REMARKS
E4-1	KERB INLET PIT	WBC009	708958.264	6286787.926	0.87	0.67			225	873.686	874.7	1.014	REFER NOTE ON DRAWING 13
P1-1	SURFACE INLET PIT	WBC011	708920.231	6286826.717	0.9	0.9			300	873.284	875.433	2.148	
P1-2	SURFACE INLET PIT	WBC011	708924.189	6286847.712	0.9	0.9	300	873.178	300	873.158	874.998	1.84	
P1-3	SURFACE INLET PIT	WBC011	708931.453	6286852.582	0.9	0.9	300	873.114	300	873.094	874.772	1.678	
P1-4	SURFACE INLET PIT	WBC011	708952.952	6286867.332	0.9	0.9	300	872.959	300	872.939	874.372	1.433	
P7-6	SURFACE INLET PIT	WBC011	708960.862	6286866.149	0.9	0.9	300	872.899	500	072.333	874.307	1.47	REFER NOTE ON DRAWING 13
P3-1	KERB INLET PIT	WBC009	708970.625	6286784.872	0.6	0.9		0,2.000	225	873.972	874.686	0.714	
P3-2	KERB INLET PIT	WBC009	708972.091	6286788.976	0.6	0.9	225	873.954	225	873.934	874.7	0.766	
E1-1	SURFACE INLET PIT	WBC011	709002.556	6286787.447	0.87	0.67	225	873.81			874.241	0.451	REFER NOTE ON DRAWING 13
P4-0	KERB INLET PIT	WBC009	708982.294	6286800.486	0.9	0.6			225	873.222	874.995	1.772	
P4-1	KERB INLET PIT	WBC009	708986.636	6286801.481	0.6	0.6	225	873.199	225	873.179	874.2	1.02	
P4-2	KERB INLET PIT	WBC009	708988.707	6286812.505	0.6	0.6	225	873.123	300	873.103	875.06	1.957	
P4-3	KERB INLET PIT	WBC009	709004.101	6286815.647	0.6	0.6	300	873.023	300	873.003	874.2	1.197	
P4-4	KERB INLET PIT	WBC009	709017.671	6286813.08	0.6	0.6	300	872.933	300	872.485	874.2	1.715	
P4-5	KERB INLET PIT	WBC009	709018.18	6286816.546	0.6	0.6	300	872.467	300	872.447	874.2	1.753	
P4-6	KERB INLET PIT	WBC009	709027.571	6286818.537	0.6	0.9	300	872.397	300	872.377	874.605	2.228	
P4-7	KERB INLET PIT	WBC009	709031.577	6286837.268	0.6	0.9	300	872.277	300	872.257	874.431	2.174	
P4-8	SURFACE INLET PIT	WBC011	709039.019	6286848.711	0.9	0.9	300	871.89	375	871.89	872.691	0.801	
P4-9	SURFACE INLET PIT	WBC011	709061.784	6286843.099	0.9	0.9	375	871.77	375	871.77	872.347	0.577	
P5-2	KERB INLET PIT	WBC009	709019.085	6286829.864	0.6	0.6			225	873.311	874.783	1.472	
P5-1	SURFACE INLET PIT	WBC011	709023.077	6286837.913	0.9	0.9	225	873.221	225	873.201	874.192	0.99	
P6-2	KERB INLET PIT	WBC009	709013.718	6286870.892	0.6	0.9			225	873	875.194	2.194	
P6-3	KERB INLET PIT	WBC009	709022.641	6286857.834	0.6	0.9	225	872.92	225	872.9	874.718	1.818	
P6-4	KERB INLET PIT	WBC009	709029.986	6286846.906	0.6	0.9	225	872.77	225	872.77	874.389	1.619	REFER NOTE ON DRAWING 13
P7-6	SURFACE INLET PIT	WBC011	708960.862	6286866.149	0.9	0.9	475	872.838	475	872.838	874.307	1.47	
P7-1	SURFACE INLET PIT	WBC011	708959.549	6286793.854	0.9	0.9	225	873.655	300	873.545	874.738	1.193	
P7-2	SURFACE INLET PIT	WBC011	708971.708	6286796.291	0.6	0.6	300	873.48	300	873.48	874.379	0.899	
P7-3	SURFACE INLET PIT	WBC011	708976.05	6286815.814	0.6	0.6	300	873.37	300	873.37	874.198	0.828	
P7-4	SURFACE INLET PIT	WBC011	708971.539	6286833.759	0.6	0.6	300	873.27	300	873.27	874.336	1.066	
P7-5	SURFACE INLET PIT	WBC011	708958.508	6286854.022	0.9	0.9	300	873.145	475	873	874.467	1.467	
P8-1	PRECAST GRATED INLET 900X900	WBC012	709012.94	6286807.523	0.9	0.9			225	872.578	873.8	1.222	
E1-1	SURFACE INLET PIT	WBC011	709002.556	6286787.447	0.87	0.67			225	873.79	874.241	0.451	REFER NOTE ON DRAWING 13
9-1	KERB INLET PIT	WBC009	709046.354	6286802.684	0.9	0.6	225	873.062	225	873.062	873.7	0.638	
P1-1	SURFACE INLET PIT	WBC011	708920.231	6286826.717	0.9	0.9	225	873.304			875.433	2.148	

NOTES:

1. FOR GENERAL NOTES ON DRAWING NUMBER 130607-JAC-CV-DWG-0005

NOTES FOR PIT SCHEDULE

- 1. XY SETOUT TO PIT CENTRE
- 2. SETOUT LEVEL TO PIT COVER LEVEL
- 3. PIPES UNDER ACCESS ROADS TO BE MINIMUM CLASS 4 RCP OR QUIVALENT APPROVED.
- 4. PIPES NOT UNDER ROADS TO BE A MINIMUM CLASS 2 RCP OR EQUIVALENT APPROVED.

_	_			
			 _	 $\overline{}$
			_	 Ţ
			_	
			_	Ì
			_	
			_	

2

-

SCALE 1: 10

L30607-JAC-CV-DWG-0005
L30607-JAC-CV-DWG-0005
L30607-JAC-CV-DWG-0005
L30607-JAC-CV-DWG-0005
L30607-JAC-CV-DWG-0005

+61 2	+61 2 9211 7777 aaron@bmplusg.com.au							
Genu Nam N Level 6 <pho< th=""><th colspan="8">Cost Management Genus Advisory Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <phone> namnguyen@genusadvisory.com.au</phone></th></pho<>	Cost Management Genus Advisory Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <phone> namnguyen@genusadvisory.com.au</phone>							
NBR Anselr 4 Glen +61 2	HITECT S ARCHITE no Matsui o Street, Milsons 9095 5640 no.matsui@nbrs	s Point, NSW, 2061						
Issu	е							
No.	Date	Description	Chkd					
0	10.05.23	DRAFT 50% DESIGN DEVELOPMENT	K.L					
1	06.07.23	75% DESIGN DEVELOPMENT	K.L					
2	09.08.23	FOR TENDER	K.L					
Build	ding Servic	es, Structural & Civil Consulta	ints					

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

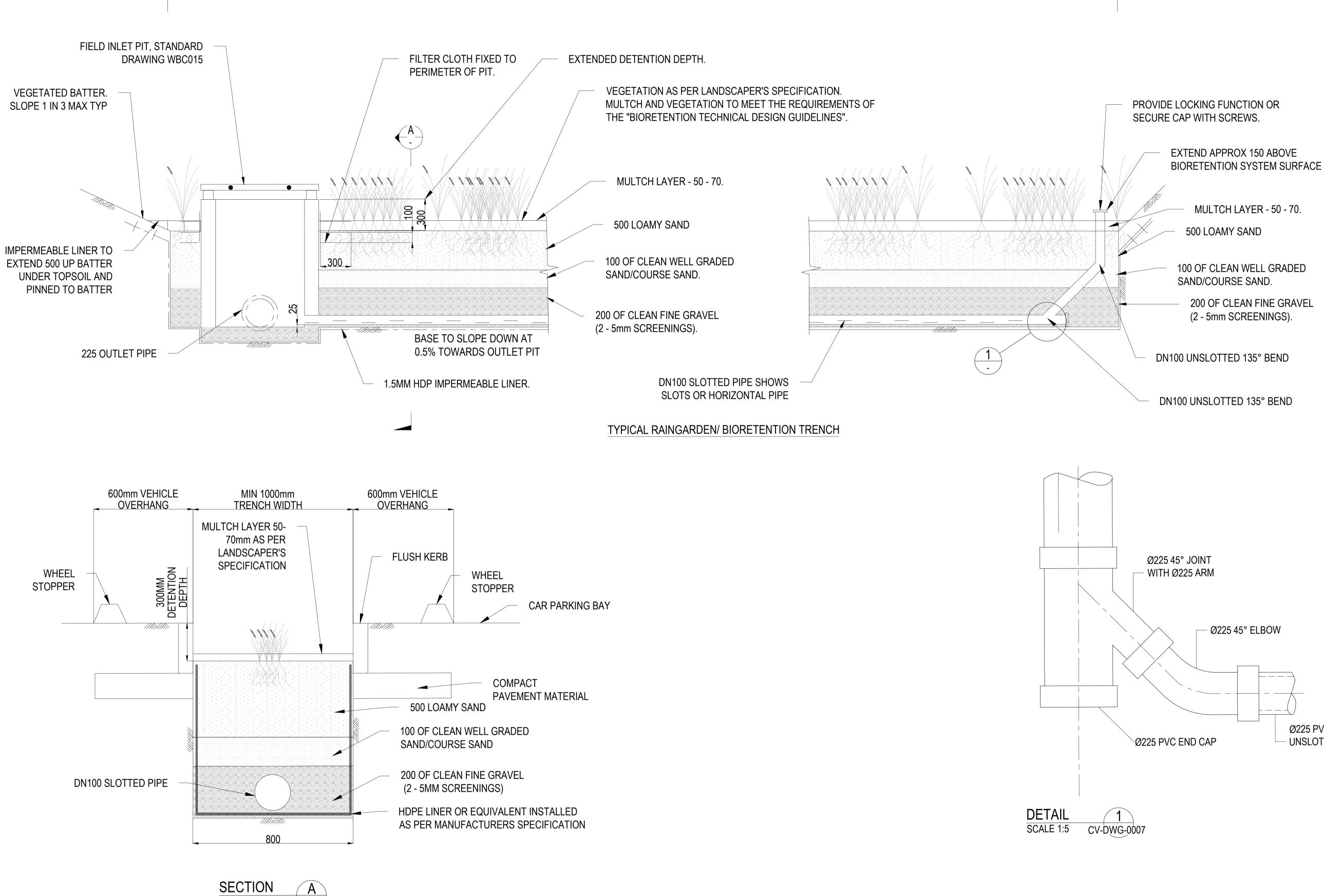
Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title **CIVIL WORKS** STORMWATER AND DRAINAGE TYPICAL DETAILS



Drawing Reference

130607-JAC-CV-DWG-0006

0 10 20 30 40 50 60 70 80 90 100

Scale 1 : 250@ A1

GENERAL NOTES:

ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE STATED.

SCALE 1:50

-

- LINER IS NOT REQUIRED WHERE GEOTECHNICAL INSPECTION HAS 2.
- DETERMINED IN-SITU MATERIAL PROVIDES SUFFICIENT IMPERMEABILITY.

WELLINGTON BLAYNEY CABONNE COUNCIL STRATEGIC ALLIANCE REFERENCE DRAWINGS

WBC009	STORMWATER - KERB INLET PIT CONFIGURATI
WBC010	STORMWATER - PIPE BEDDING
WBC011	STORMWATER - FOOTPATH SURFACE INLET PI
WBC012	STORMWATER - SURFACE/SURCHARGE PITS
WBC015	STORMWATER - FIELD INLET AND INTERALLOT
WBC017	STORMWATER - SUBSOIL DRAINAGE LINES
WBC018	STORMWATER - SUBSOIL FLUSHOUT AND OUT

LEGEND

MULTCH LAYER 50 - 70
500 LOAMY SAND
100 OF CLEAN WELL GRADED SAND/COURSE SAND
200 OF CLEAN FINE GRAVEL (2-5mm SCREENINGS)

Ø225 PVC - UNSLOTTED PIPE

TION

PITS

TMENT PITS

ITLET STRUCTURES

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT NBRS ARCHITECTURE

Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

lssue No. Date 10.05.23 0 06.07.23 1 09.08.23 2

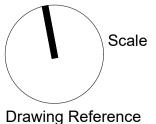
Description DRAFT 50% DESIGN DEVELOPMENT K.L 75% DESIGN DEVELOPMENT FOR TENDER

K.L K.L

Chkd

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA


Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

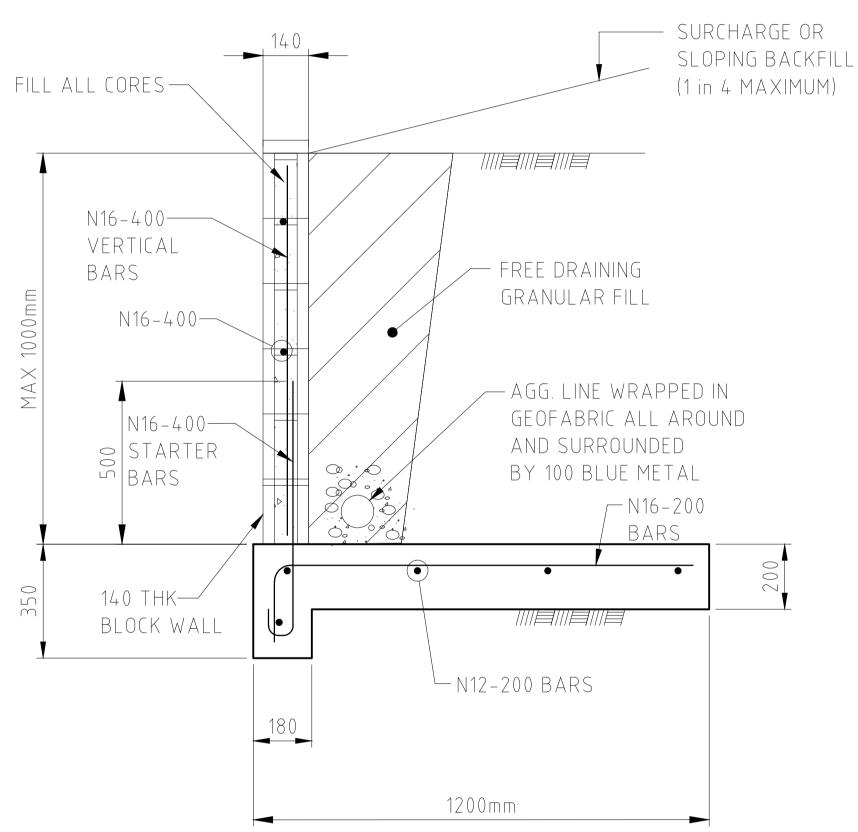
3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title CIVIL WORKS DRAINAGE DETAILS

1 : 250@ A1

Revision


2

0 10 20 30 40 50 60 70 80 90 100

130607-JAC-CV-DWG-0007

00 $\left[\right]$ \times \triangleleft 350

NOTES 1. FOR GENERAL STRUCTURES, RETAINING WALL CONCRETE AND REINFORCEMENT REFER TO STRUCTURAL SERVICES GENERAL NOTES ON DRAWING NUMBER 130607-JAC-ST-DWG-0001

TYPICAL RETAINING WALL DETAIL

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

lssue No. Date

0 06.07.23 1 09.08.23

Description 75% DESIGN DEVELOPMENT FOR TENDER

Chkd K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

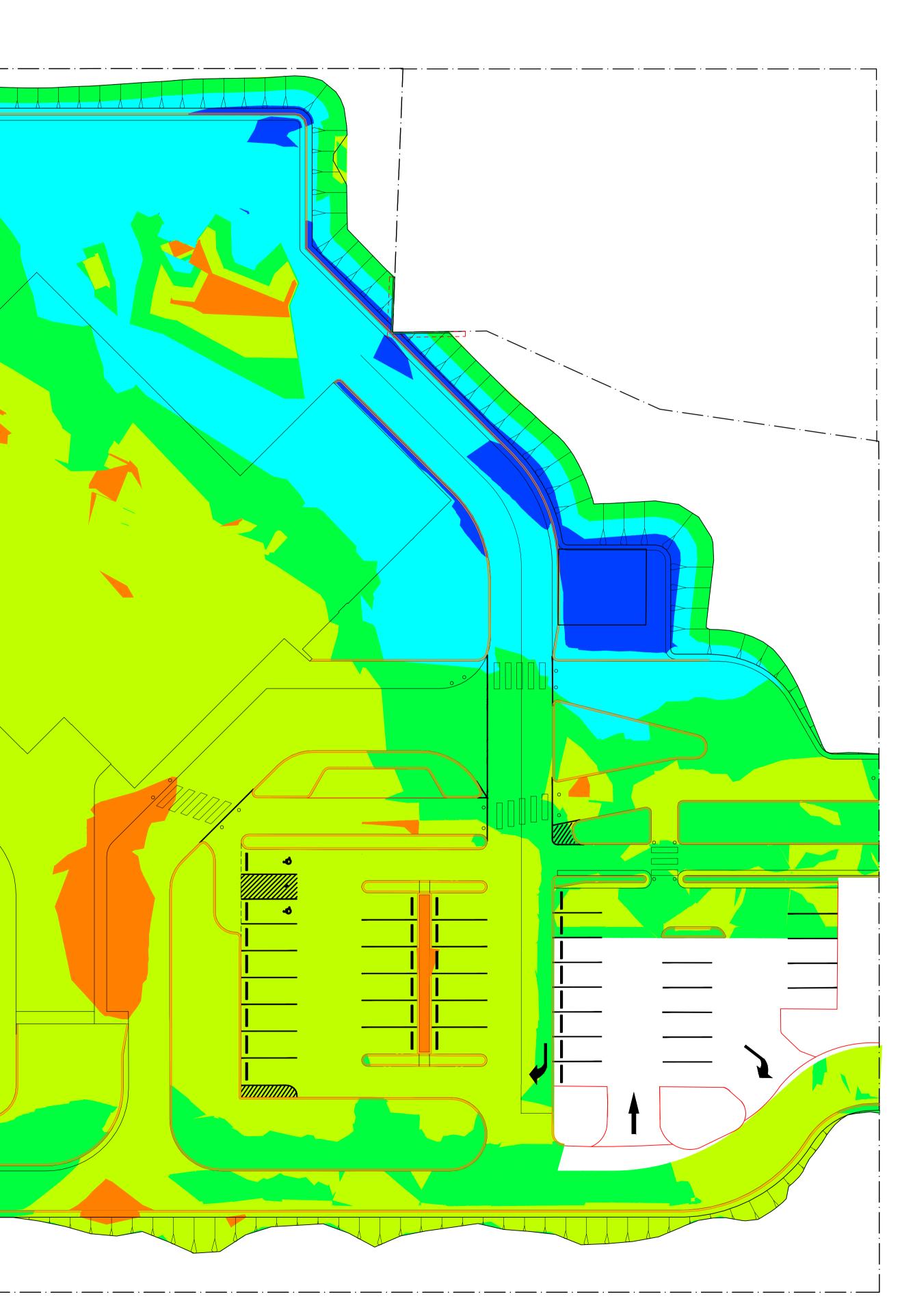
for Health Infastructure

Drawing Title CIVIL WORKS RETAINING WALL TYPICAL DETAILS

1 : 250@ A1 Scale

130607-JAC-CV-DWG-0008

Drawing Reference


Revision

0 10 20 30 40 50 60 70 80 90 100

Surface Analysis: Elevation Ranges						
Number	Color	Minimum Elevation (m)	Maximum Elevation (m)			
1		-2.000	-1.000			
2		-1.000	-0.500			
3		-0.500	0.000			
4		0.000	0.500			
5		0.500	1.000			
6		1.000	1.500			
7		1.500	2.000			

NOTES

ALLOW FOR ADDITIONAL CUT AND FILL REQUIREMENTS, E.G. IN AREAS OF EXISTING FOOTINGS, WHERE TREES ARE REMOVED AND WHERE RESIDUAL SOIL IS NOT ENCOUNTERED, AS NOTED ON STRUCTURAL DRAWINGS 13067-ST-DWG-0060, 0061 & 0070.

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT NBRS ARCHITECTURE

Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

Issue

No. Date

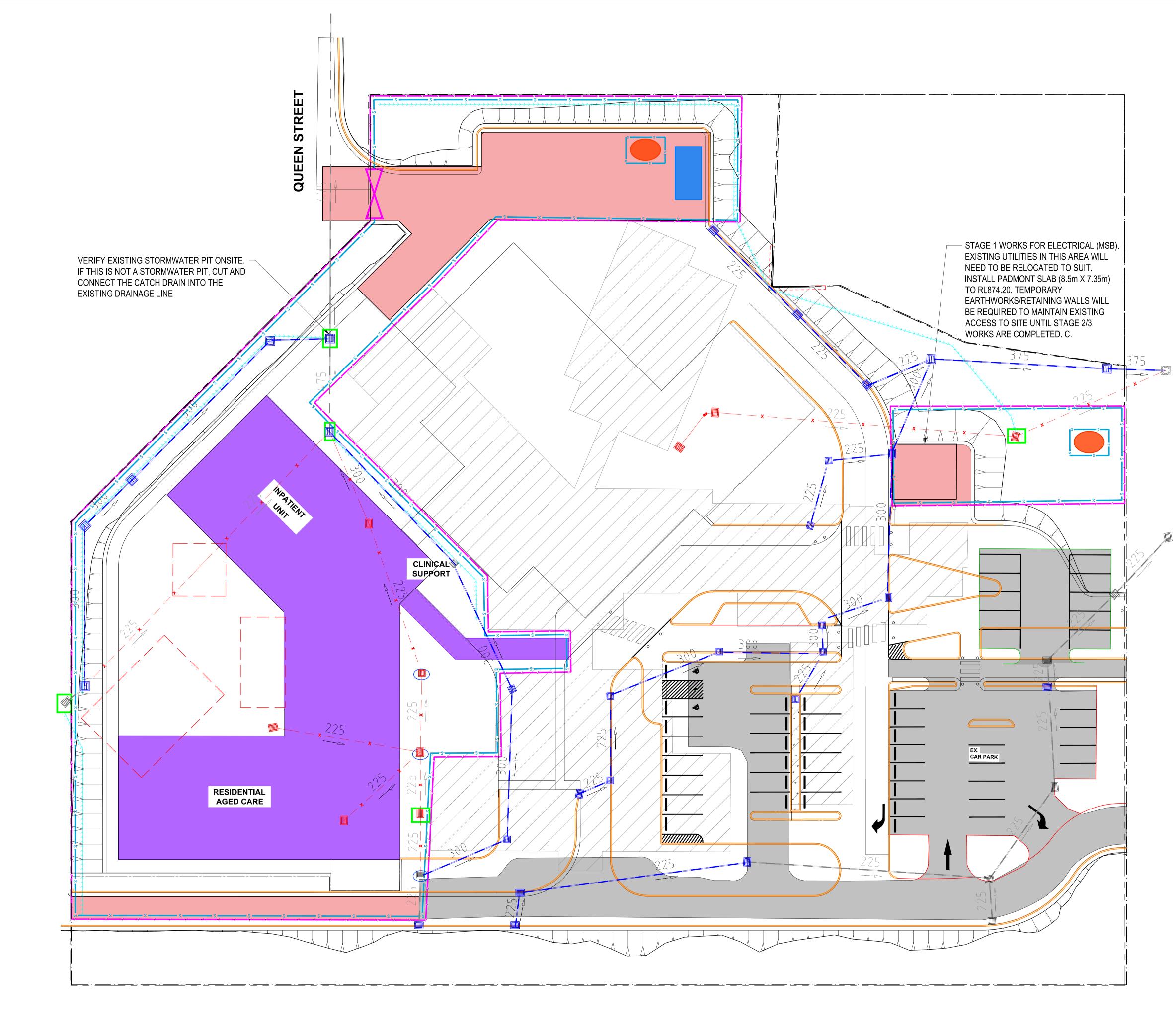
Description
 0
 06.07.23
 75% DESIGN DEVELOPMENT

 1
 09.08.23
 FOR TENDER
 Chkd K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

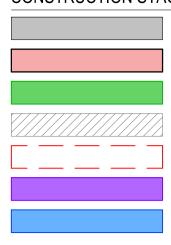

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

for Health Infastructure

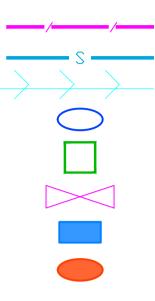
Drawing Title CIVIL WORKS CUT AND FILL PLAN

Scale 1 : 250@ A1 Drawing Reference Revision 130607-JAC-CV-DWG-0009 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 100 |



NOTES EROSION AND SEDIMENT CONTROLS ARE INDICATIVE ONLY.
 FURTHER TEMPORARY STAGING MAY BE REQUIRED AS CONSTRUCTION PROGRESSES. 3. EROSION SEDIMENT CONTROL MEASURES TO BE IN

ACCORDANCE WITH BLAYNEY SHIRE COUNCIL DCP PART G.


LEGEND REFERENCE ONLY

----- PROPOSED BOUNDARY CONSTRUCTION STAGING

EXISTING ROAD AND CARPARK ROAD AND CARPARK IN CONSTRUCTION ROAD AND CARPARK CONSTRUCTED EXISTING BUILDING EXISTING BUILDING DEMOLISHED NEW BUILDING IN CONSTRUCTION NEW BUILDING CONSTRUCTED

EROSION AND SEDIMENT CONTROL

SO

 \leq

 \triangleright

Ζ S

TRE

Ц

BARRIER FENCE SEDIMENT FENCE CATCH DRAIN GRAVEL FILTER / GEOTEXTILE SAUSAGE GEOTEXTILE INLET FILTER GATE SITE COMPUND STOCK PILE AREA

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

ssue No. Date 0 17.02.23 1 2 09.08.23 3

22.02.23 06.07.23

Description 100% SCHEMATIC DESIGN ISSUE 100% SCHEMATIC DESIGN ISSUE 75% DESIGN DEVELOPEMENT FOR TENDER

Chkd K.L K.L K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 Osman St, Blayney NSW 2799

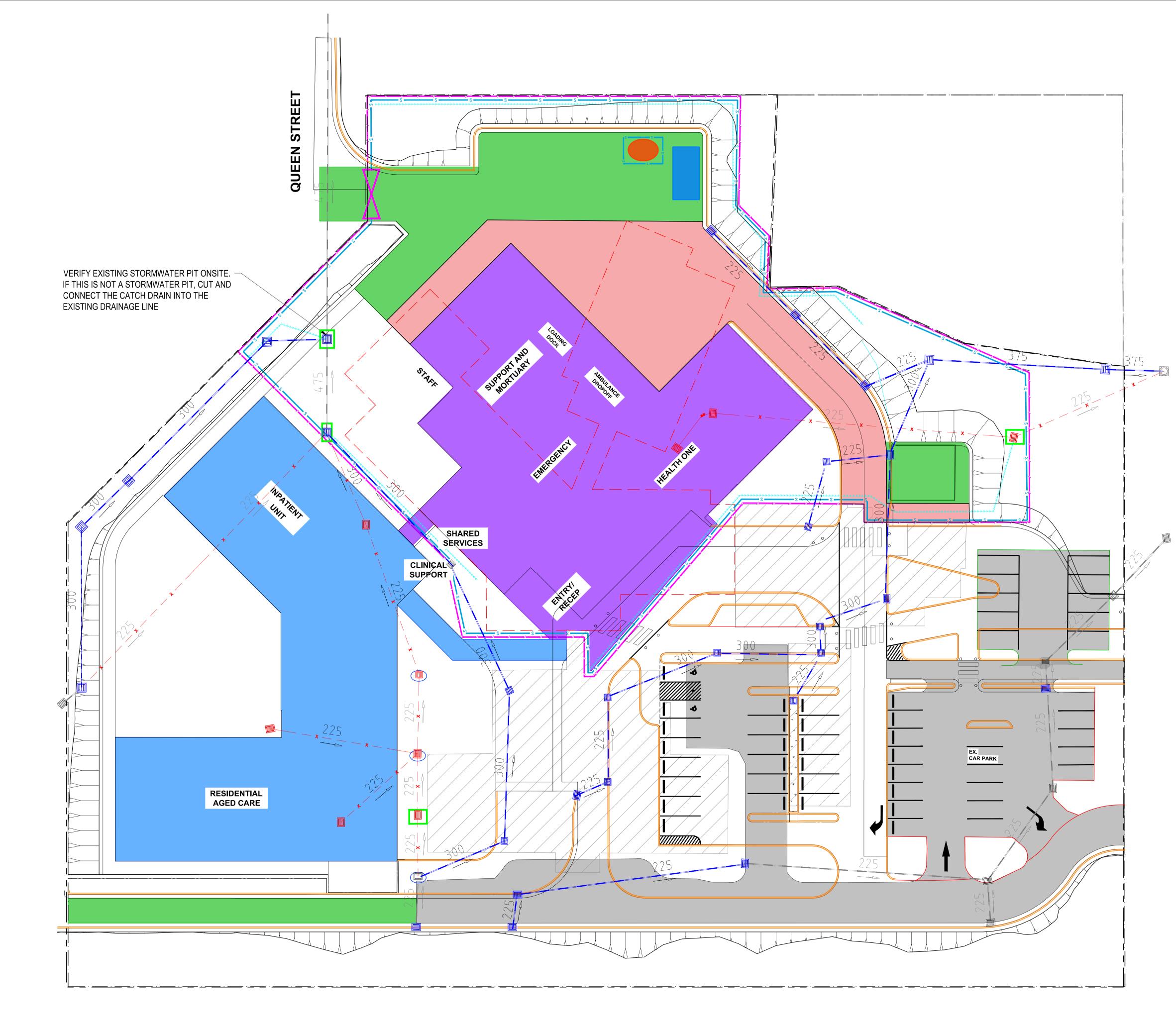
for

Health Infastructure

Drawing Title CIVIL WORKS **CONSTRUCTION STAGING & EROSION AND SEDIMENT CONTROL** STAGE 1

0 10 20 30 40 50 60 70 80 90 100

Scale

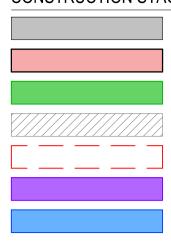

Drawing Reference

130607-JAC-CV-DWG-0121

1 : 250@ A1

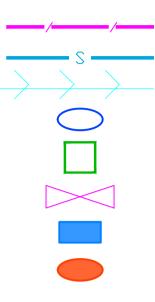
Revision

3



NOTES EROSION AND SEDIMENT CONTROLS ARE INDICATIVE ONLY.
 FURTHER TEMPORARY STAGING MAY BE REQUIRED AS CONSTRUCTION PROGRESSES. 3. EROSION SEDIMENT CONTROL MEASURES TO BE IN

ACCORDANCE WITH BLAYNEY SHIRE COUNCIL DCP PART G.


LEGEND REFERENCE ONLY

----- PROPOSED BOUNDARY CONSTRUCTION STAGING

EXISTING ROAD AND CARPARK ROAD AND CARPARK IN CONSTRUCTION ROAD AND CARPARK CONSTRUCTED EXISTING BUILDING EXISTING BUILDING DEMOLISHED NEW BUILDING IN CONSTRUCTION NEW BUILDING CONSTRUCTED

EROSION AND SEDIMENT CONTROL

SO

ΜA

ź

STRE

Щ

BARRIER FENCE SEDIMENT FENCE CATCH DRAIN GRAVEL FILTER / GEOTEXTILE SAUSAGE GEOTEXTILE INLET FILTER GATE SITE COMPUND STOCK PILE AREA

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

ssue No. Date 0 17.02.23 1 2 09.08.23 3

22.02.23 06.07.23

Description 100% SCHEMATIC DESIGN ISSUE 100% SCHEMATIC DESIGN ISSUE 75% DESIGN DEVELOPEMENT FOR TENDER

Chkd K.L K.L K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

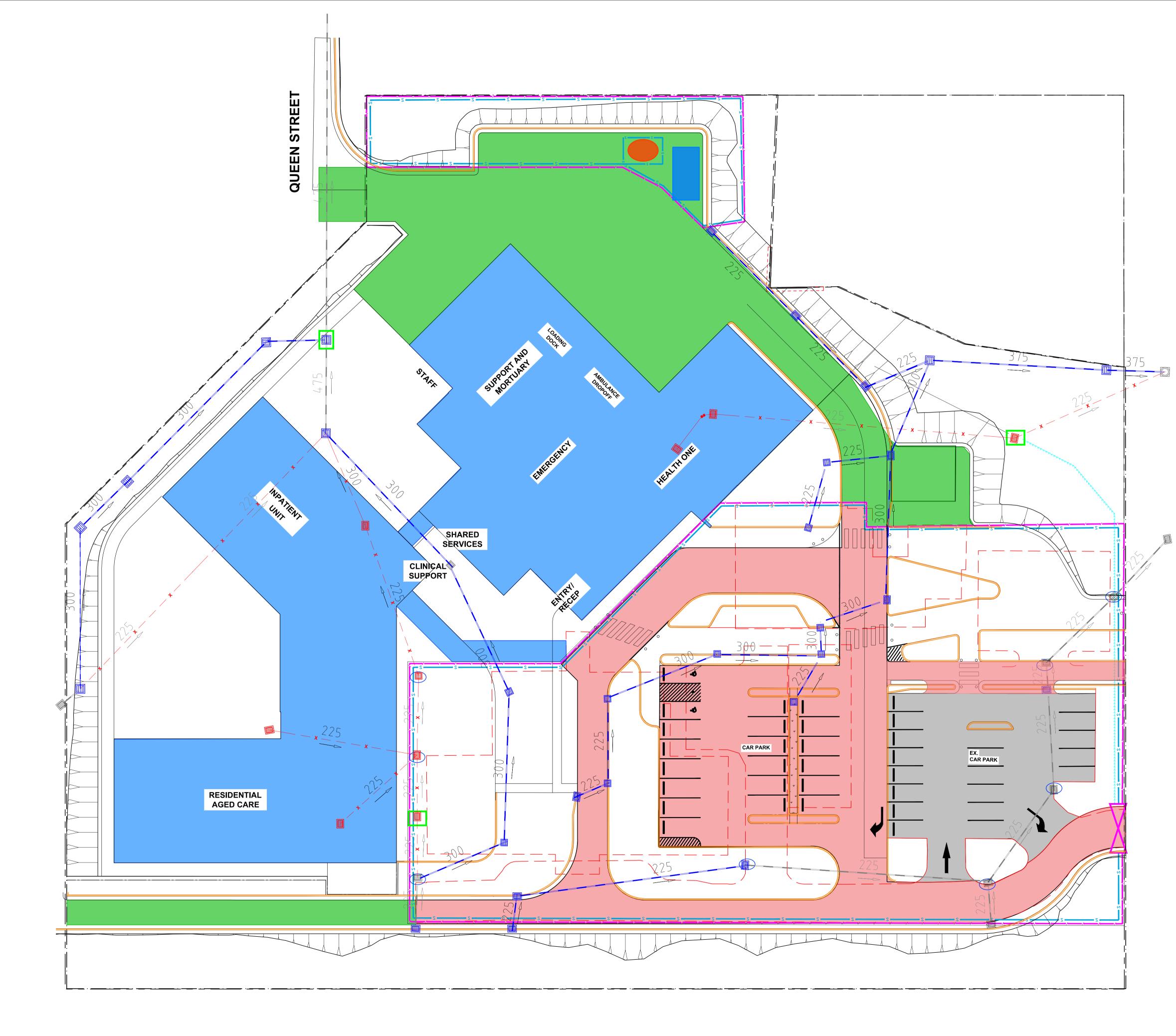
Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title CIVIL WORKS **CONSTRUCTION STAGING & EROSION AND SEDIMENT CONTROL** STAGE 2

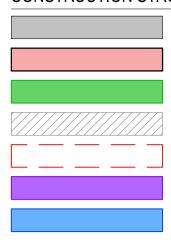

Drawing Reference

130607-JAC-CV-DWG-0122

1 : 250@ A1

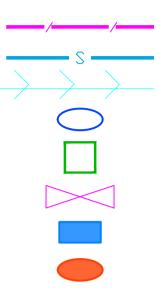
0 10 20 30 40 50 60 70 80 90 100

Revision



NOTES EROSION AND SEDIMENT CONTROLS ARE INDICATIVE ONLY.
 FURTHER TEMPORARY STAGING MAY BE REQUIRED AS CONSTRUCTION PROGRESSES.
 ACCESS TO HEALTH ONE BUILDING AND RESIDENTIAL AGED CARE BUILDING WILL NEED TO BE CONSIDERED FROM THE EXISTING CARPARK.
 EROSION SEDIMENT CONTROL MEASURES TO BE IN ACCORDANCE WITH BLAYNEY SHIRE CONNOL DER DART CONTROL MEASURES TO BE IN ACCORDANCE WITH BLAYNEY SHIRE

COUNCIL DCP PART G.


LEGEND REFERENCE ONLY

----- PROPOSED BOUNDARY CONSTRUCTION STAGING

EXISTING ROAD AND CARPARK ROAD AND CARPARK IN CONSTRUCTION ROAD AND CARPARK CONSTRUCTED EXISTING BUILDING EXISTING BUILDING DEMOLISHED NEW BUILDING IN CONSTRUCTION NEW BUILDING CONSTRUCTED

EROSION AND SEDIMENT CONTROL

SO

MΑ

Ż

STRE

Щ

BARRIER FENCE SEDIMENT FENCE CATCH DRAIN GRAVEL FILTER / GEOTEXTILE SAUSAGE GEOTEXTILE INLET FILTER GATE SITE COMPUND STOCK PILE AREA

BCA Consultant Blackett Maguire + Goldmsith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ARCHITECT

NBRS ARCHITECTURE Anselmo Matsui 4 Glen Street, Milsons Point, NSW, 2061 +61 2 9095 5640 anselmo.matsui@nbrs.com.au

ssue No. Date 0 17.02.23 1 2 09.08.23 3

22.02.23 06.07.23

Description 100% SCHEMATIC DESIGN ISSUE 100% SCHEMATIC DESIGN ISSUE 75% DESIGN DEVELOPEMENT FOR TENDER

Chkd K.L K.L K.L K.L

Building Services, Structural & Civil Consultants

Level 7, 177 Pacific Highway P.O. Box 632 North Sydney, NSW 2060 AUSTRALIA

Tel: +61 2 9928 2100 Fax: +61 2 9928 2500 Web: www.jacobs.com

Project Blayney HS

at 3 OSman St, Blayney NSW 2799

for Health Infastructure

Drawing Title CIVIL WORKS **CONSTRUCTION STAGING &** EROSION AND SEDIMENT CONTROL STAGE 3

Drawing Reference

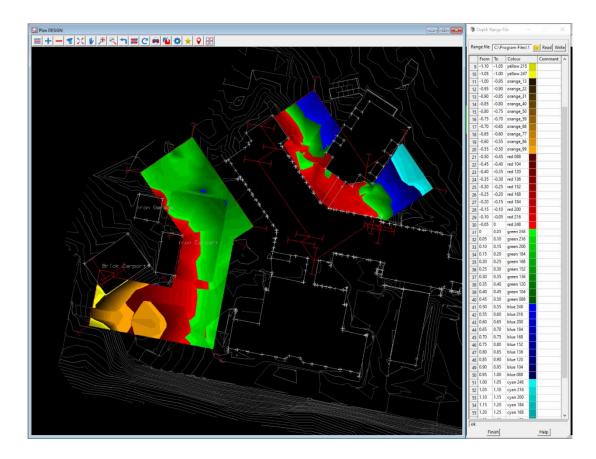
130607-JAC-CV-DWG-0123

1 : 250@ A1

0 10 20 30 40 50 60 70 80 90 100

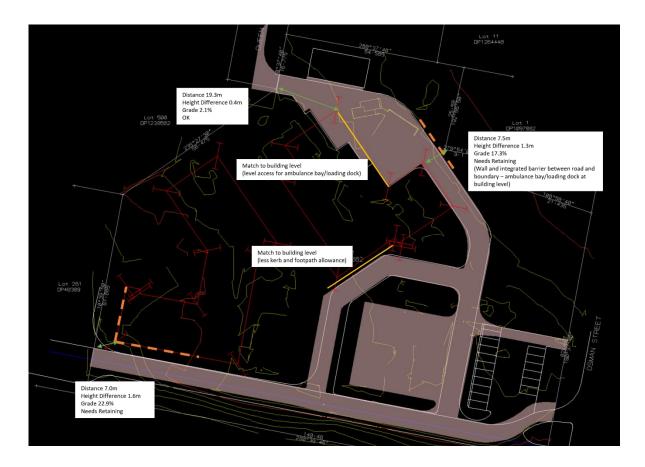
Appendix B. Earthworks

Earthworks Preliminary Analysis


Date:17 February 2023Project name:Blayney HospitalProject no:IA228800Prepared by:Martin Yates

Jacobs Australia Pty Limited

Level 7, 177 Pacific Highway North Sydney, NSW 2060 PO Box 632 North Sydney, NSW 2059 Australia T +61 2 9928 2100 F +61 2 9928 2444 [Website]


Please see below high level summary of key items for Blayney. This is a preliminary preliminary analysis only with the design still at a 2d strategic level.

- Proposed levels Residential Aged Care building FSL = 874.65 and Health One building FSL = 874.20. Footing depth is unknown at this stage.
- The proposed levels provide 0.45m height difference between buildings and approximately balance maximum cut and fill across the site, volume balance has not been reviewed at this stage.
- The image below highlights depth range for the proposed buildings compared to the existing surface levels. The Residential Aged Care building requires approximately 1.3m cut in the south-west corner of the site and the Health One buildings requires approximately 1.2m fill on the north-east corner of the building adjacent the boundary.

Key items for consideration

- South-west corner of site adjacent the Residential Aged Care building. The close proximity of the access road and building requires a retaining structure at this location to address the proposed 1.3m fill. The access road is constrained by the existing levels at the interface with the road off Oldham Place. Consideration is required for the proximity of a retaining structure to the edge of the proposed access road and for a potential circulating path around the building. There is approximately 2.3m between the proposed building roof line and the edge of the access road.
- Level access for ambulance bay/loading dock. It has been assumed that the pavement levels for the ambulance bay/loading dock will match the building FSL at the interface with the Health One building and grade away from the building at a maximum of 2.5%. This detail is to be further developed at the detailed design stage.
- Pinch point North-east of Health One building. The proposed location of the Health One building constrains the available space for a circulating roadway connecting the ambulance bay/loading dock and the main car park. At the corner of the site boundary there is approximately 7.5m offset (0.75m circulating path adjacent the building, 6.0m road, 0.75m residual to boundary) with a 1.3m difference in height. The surface level of the proposed new road is constrained by the ambulance bay/loading dock levels, with the height difference to the existing surface to be addressed by a retaining structure adjacent the boundary located in the 0.75m to the proposed new road. Assuming a 2.5% grade from the ambulance bay/loading dock interface, the proposed new road could be located approximately 0.3m below the building FSL with a residual of approximately 1.0m to be addressed via the retaining structure.

Appendix C. Stormwater Drainage Memo

Stormwater Assessment (Final)

Date:	9 August 2023			
Project name:	Blayney MPS			
Project no:	IA228800			
Attention:	Nick Crossingham			
Company:	APP			
Prepared by:	Rapula Regoeng			

Jacobs Group (Australia) Pty Ltd

Level 7, 177 Pacific Highway North Sydney, NSW 2060 PO Box 632 North Sydney, NSW 2059 Australia T +61 2 9928 2100 F +61 2 9928 2444 www.jacobs.com

New stormwater drainage systems and modification of existing drainage systems where required has been carried out to comply with the Wellington, Blayney and Cabonne Council (WBC) Strategic Alliance Guidelines for Engineering Works, Australian Standards and Austroads guidelines adopting design parameters tabled below.

Criterion	Requirement	Source
Minor Drainage	20% AEP	Section 3.3.1 of WBC Strategic Alliance
System		Guidelines for Engineering Works
Major Drainage	1% AEP	Section 3.3 of WBC Strategic Alliance
System		Guidelines for Engineering Works
Flow width	2.5m for the minor drainage system	Section 3.4.1.2 of WBC Strategic Alliance
	1m at intersections	Guidelines for Engineering Works
Minimum pipe	225mm for the minor drainage	Section 3.8.4.3 of WBC Strategic Alliance
size	system	Guidelines for Engineering Works
	100mm for water quality elements	
Pipe Class	SN1000 for UPVC	Manufacturer's specification
	Class 3 for RCP or FRC under	
	carriageways/carpark	
Minimum pipe	300mm absolute minimum cover	Sections 3.4.2.5 & 3.4.2.6 of WBC Strategic
cover	600mm under the kerb line	Alliance Guidelines for Engineering Works
Minimum pipe	1% where possible	Sections 3.4.2.4 of WBC Strategic Alliance
grade		Guidelines for Engineering Works
		AS3725
Minimum pipe	0.6m/s for 1EY	AGRD Part 5A
velocity		
Maximum pipe	6m/s (absolute = 8m/s)	AGRD Part 5A
velocity		
Pipe Installation	H2 trench installation within	Sections 3.4.2.1 of WBC Strategic Alliance
Support	footpaths and HS2 trench installation	Guidelines for Engineering Works
	under carriageway	AS3725
Freeboard	150mm for minor drainage systems	Sections 3.3.1 and 3.4.1.2 of WBC Strategic
	500mm for major drainage systems	Alliance Guidelines for Engineering Works
Maximum pit	85m	Section 3.4.1.2 of WBC Strategic Alliance
spacing		Guidelines for Engineering Works
Pit bypass flow	15% of the gutter flow	Section 3.4.1.2 of WBC Strategic Alliance
	-	Guidelines for Engineering Works

 Table 1: Summary of drainage design criterion

Memorandum

Velocity x depth factor	0.4m2/s	Section 3.4.1.2 of WBC Strategic Alliance Guidelines for Engineering Works
Channel lining	Concrete lined n = 0.013 Gabions n = 0.03 Grassed channel n = 0.035 Clear earth n = 0.02	Section 3.5.2 of WBC Strategic Alliance Guidelines for Engineering Works
Blockage factor	20% for on-grade 50% for sag pits	Section 3.4.1.3 of WBC Strategic Alliance Guidelines for Engineering Works
Drainage structures	All drainage elements including but not limited to kerb inlet pits and surface inlet pits	Council standard drawings and RTA standard drawings

In addition to broad stormwater objectives in Section 3.1 of WBC Strategic Alliance Guidelines for Engineering Works, the stormwater drainage design includes the following:

- Maintain existing stormwater flow direction and discharge points in Queens Street and Osman Street
- Include measures for the management of external overland flows along the Western boundary in order to minimise impact on the proposed buildings
- Maintain and utilise existing drainage systems at the existing the connection
- Retain and utilise existing drainage system where physically possible
- Provide water quality measures for the new carpark in order to maintain existing water quality and
- Provide two new rainwater tanks to enhance the mandate of stormwater harvesting and reuse for irrigation purposes.

The subject site has three main sub-catchments discharging to three existing discharge points, two discharge points in Osman Street and one discharge point in Queens Street existing drainage systems as shown in Figure 1 below. In the proposed condition, the stormwater design will maintain and utilise the existing discharge points, with minor reconfiguration of internal sub-catchments.

Memorandum

Figure 1: Existing Sub-catchments and Discharge Points

Stormwater runoff from the subject site discharging into Osman Street and Queens Street existing drainage systems is conveyed via the existing drainage pit and pipe systems to Stillingfleet Street existing drainage systems before discharging into a wetland located at the intersection of Stillingfleet Street and Lower Farm St, Figure 2 below, for detention and treatment before ultimately discharging to Belubula River.

Existing Site Discharge Points

Figure 2: Existing Council drainage systems

The stormwater strategy for the proposed development seeks to utilise the existing Council stormwater drainage systems to convey runoff from the site to the existing wetlands at the corner of Stillingfleet Street and Lower Farm Street for detention and water quality treatment. The development proposed to install raingardens in the new carpark to treat runoff from the carpark only and provide two 10 000L rainwater tanks for stormwater harvesting and reuse in irrigation of landscaped areas. It is expected that the provision of rainwater tanks and raingarden in the proposed carpark will enhance the use of water sensitive urban design elements and reduce pollutant loads carried by the stormwater runoff from the subject site to the existing wetlands where further treatment and detention will occur.

The peak stormwater runoff discharges from the subject site in the existing condition and in the post development condition are as tabled below.

	Existing Contributing Catchment					
Outlet Points		Total Impervious		Q20 % AEP peak		
Outlet Follits	Area	Area		flows	Q 1 % AEP peak flows	
	Ha	Ha	%	L/s	L/s	
Queen Street Sub-catchment	0.79	0.47	60	98.0	216.0	
Osman Street Sub-catchment, Existing Pit						
4-1	0.33	0.18	55	37.0	85.0	
Osman Street Sub-catchment Existing Pit						

0.55

1.67

Table 2: Peak stormwater discharges occurring in the existing condition

Table 3: Peak stormwater discharges occurring in the post development

Total

	Post Development Contributing Catchment					
Outlet Points	Area	Total Impervious Area Area		Q 20 % AEP peak flows	Q 1 % AEP peak flows	
	Ha	Ha	%	L/s	L/s	
Queen Street Sub-catchment		0.50	65	101.0	216.0	

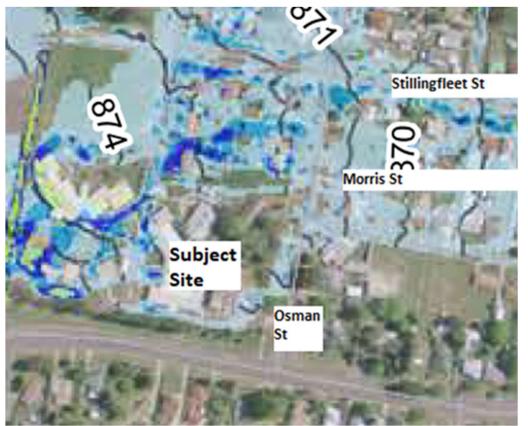
0.28

50

58.0

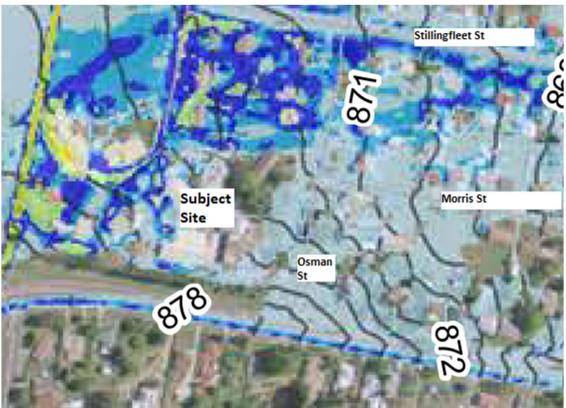
6-1

139.0


Memorandum

Osman Street Sub-catchment, Existing Pit 4-1	0.38	0.19	50	41.0	96.0
Osman Street Sub-catchment, Existing Pit					
6-1	0.52	0.34	65	68.0	144.0
Total	1.67				

As shown in Tables 2 and 3 above, peak flows discharging to each of the three existing connection points in the post development condition is about the same as the peak flows in the existing condition and it is expected that no onsite detention or upgrade of the existing external stormwater drainage systems will be required as a result of the proposed hospital redevelopment. Peak flows are maintained by reconfiguring the inter-allotment sub-catchments such that the total impervious areas contributing to each of the discharge points in the post development is about the same as the total impervious area to each discharge points in the existing condition.


A review of Blayney flood studies, viz. Addendum to Blayney Flood Study – Update to Australian Rainfall and Runoff 2019 Guidelines prepared for Blayney Shire Council dated 10th February 2022 by Storm Consulting and Blayney Flood Study -Flood Study Report prepared for Blayney Shire Council dated 15th June 2015 by Jacobs indicates that Blayney Hospital is located withing the overland flow path of runoff cascading from the catchment west of the Hospital.

The 2015 Blayney flood study indicated the development site inundated in a 20%AEP event and above due to the overland flows from the catchment west of the hospital as shown in refer Figures 3 and 4 below.

Figure 3: Existing gap flows discharging via Osman Street, Morris St & Stillingfleet St in a 20% AEP event Reference: Appendix D of Blayney Flood Study -Flood Study Report prepared for Blayney Shire Council dated 15th June 2015 by Jacobs.

Memorandum

Figure 4: Existing gap flows discharging via Osman Street, Morris St & Stillingfleet St in a 1% AEP event Reference: Appendix D of Blayney Flood Study -Flood Study Report prepared for Blayney Shire Council dated 15th June 2015 by Jacobs

Water quality measures proposed for the hospital redevelopment includes raingardens for the new carpark, grassed swale for the access roads and two 10 000 L rainwater tanks for harvesting roof water and reuse in irrigation of landscaped area. The water quality measures have been proposed to comply with the water quality objective of maintaining existing water quality of receiving waters in Section 3.1 WBC Strategic Alliance Guidelines for Engineering Works. Review of the water quality outputs from the development site using MUSIC software indicates that the proposed water quality measures are sufficient to treat runoff from the site to better quality than in the existing condition as shown below and therefore complies with the water quality objective of WBC Strategic Alliance Guidelines for Engineering Works.

Table 4: Summary of Treatment Train Efficiencies in the Existing and Post Development Conditions

	Sou	urce	Residu	al Load	% Reduction		
				Post	Pre	Post	
	Pre dev.	Post Dev.	Pre dev.	Dev.	dev.	Dev.	
Flow (ML/yr)	15.8	15.7	15.8	15.6	0	0.637	
Total Suspended Solids (kg/yr)	2.84E+03	2.20E+03	2.84E+03	1.93E+03	0	12.3	
Total Phosphorus (kg/yr)	6.26	4.97	6.26	4.57	0	8.05	
Total Nitrogen (kg/yr)	44	40.2	44	38.5	0	4.23	
Gross Pollutants (kg/yr)	404	382	404	255	0	33.2	

Appendix D. Pavement Design Memo and Calculations

Blayney Hospital Redevelopment Road and Car Park Pavement Design

Date:	22 March 2023
Project name:	Blayney Hospital Redevelopment
Project no:	IA228800
Prepared by:	Kai Zheng
Reviewed by:	Brendan Bennett
Revision no:	В
Copies to:	Kathy Lau and Dana Silang

Jacobs Group Australia Pty Ltd

Level 3, 121 King William Street Adelaide, SA 5000 Australia T +61 8 8113 5400 F +61 8 8113 5440 www.jacobs.com

1. Introduction

This technical memorandum has been prepared for the pavement design of the access road and new car park for the Blayney Hospital Redevelopment in regional New South Wales. Figure 1 below shows the access roads and the proposed new car park for the hospital redevelopment:

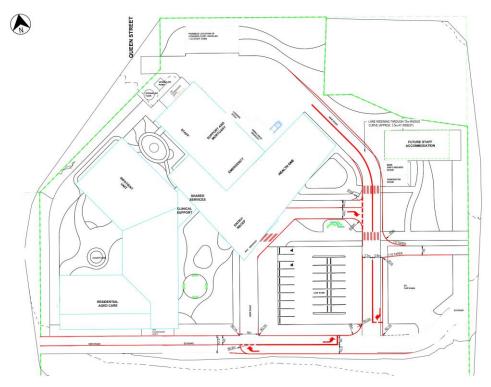


Figure 1: Access Roads for the Blayney Hospital Redevelopment

This document presents the results of the pavement recommendation for the access roads and new car park.

2. Standards, References and Guidelines

The following standards, references and guidelines are applicable for this project:

- Austroads Guide to Pavement Technology Part 2 (AGPT02): Pavement Structural Design November 2019
- Roads and Maritime Supplement to Austroads Guide to Pavement Technology Part 2: Pavement Structural Design

3. Assumptions

The following assumptions have been made for the pavement design purpose:

• Traffic volume is assumed to be 200 vehicles per day with 20% of heavy vehicles for access road and 5% for car park based on the advice provided by SCT Consulting from review of Clinical Service Plan, the Workforce Plan and an estimate of staff, visitors, and patients

4. Design Traffic Loading

Due to the low traffic volume anticipated for the hospital, the traffic load distribution for a Local Access Road with Buses from Austroads Table O 4 is considered suitable for this case, with the following factors to be used in determining the design traffic loading:

With the adoption of a 40 years design life (assumed), Lane Distribution Factor (LDF) of 1 and a Direction Factor (DF) of 1 for an one-way car park and 0.5 for a two way access road, the design traffic loading in Table 1 below is determined:

Description	AADT	HV (%)	Design Years	N _{DT} (HVAG)	DESA
Blayney Hospital Redevelopment – Access Road	200	20%	40	735000	3.23 x 10⁵
Blayney Hospital Redevelopment – Car Park	200	5%	40	368000	1.62 x 10⁵
Blayney Hospital Redevelopment – Loading Dock	200	20%	40	2205000	9.70 x 10 ⁵

Table 1 – Design Traffic Loading

Noting that it is assumed the design life of the new pavement is 40 years.

Due to the constant turning movement of heavy vehicle at the proposed loading dock, a multiplier of 3 has been applied in estimating design traffic for the loading dock based on AGPT02.

5. Asphalt Modulus

The asphalt modulus is used for the design of the full depth asphalt pavement for the loading dock area where frequent turning movement of heavy vehicles are anticipated. The following asphalt modulus is adopted for the full depth asphalt pavement:

Asphalt Mix Type	Binder	Design Speed for Asphalt Characterisation (km/hr)	WMAPT (Degree) based on AGPT Part 2 Appendix B	Adjusted Mix Modulus (MPa)
AC10	A15E	10	19	2,800
AC14	C450	10	19	4,000

Refer to Appendix B for asphalt modulus calculation.

6. Subgrade

Design subgrade CBR of 5 was determined in accordance with the Geotechnical Investigation Report by JK Geotechnics under Section 4.6. The four-day soaked CBR test report in Table B of the Geotechnical Investigation Report also indicated that the subgrade has a swell percentage of 1%. Based on Roads and Maritime Supplement to Austroads Guide to Pavement Technology Part 2: Pavement Structural Design at this location, a 10-day soaked CBR test is required due to the annual rainfall greater than 800mm as per Section 5.6.2. However, at this stage, it is assumed that no expansive soil is present (swell <2.5%) and no working

platform / capping layer is required, but it is recommended that a 10-day soaked CBR test is to be undertaken to confirm the assumption prior to work commencement.

7. Groundwater Level

Based on the geotechnical investigation report, ground water was found 0.85m below ground level at BH15 at the south-western corner of the development, with groundwater seepage encountered during or on completion of various boreholes, ranging from depths between 0.85m to 1.4m. The geotechnical investigation report recommended to install subsoil drain at least 0.3m below the subgrade levels to help manage the moisture seepage on the clay subgrade in the long term.

8. Pavement Design

A granular pavement design with asphalt wearing course to match existing pavement type is considered for this project due to the low traffic volume. However, for the loading dock area, , a full depth asphalt pavement has been considered to cater for the turning movement of heavy vehicle in the area.

The pavement configurations have been designed in accordance with the Austroads Guide to Pavement Technology – Part 2 – Pavement Structural Design (Figure 12.2).

The following pavement configuration in Table 2 and 3 below are recommended, with calculations for both access road and car park contained in Appendix A and the CIRCLY output in Appendix C.

It should be noted that a consistent pavement thickness has been adopted for the access road and car park, due to their minimal difference in thickness for ease of construction. A 10mm tolerance has also been incorporated into the subbase layer in the granular pavement and the critical asphalt layer in the full depth asphalt pavement.

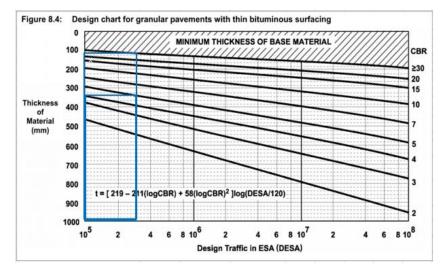
Carriageway Pavement Layer	Thickness (mm)
Wearing Course – AC10 C450	40
7mm Low Cutter Seal with Primer (C240 Binder)	-
Base Course – Class 2 DGB20 Category D	120
Subbase – DGS20	120
Subbase – DGS20 (Critical Layer)	120
Subgrade CBR	5%
Total Thickness	400

Table 2 – Granular Pavement Configuration for Access Road and Car Park

Carriageway Pavement Layer	Thickness (mm)
Wearing Course – AC10 A15E	40
Intermediate Course – AC14 C320	55
Intermediate Course – AC14 C320 (Critical Layer)	60
7mm Low Cutter Seal with Primer (C240 Binder)	-
Selected Material Zone	300
Subgrade CBR	5%
Total Thickness	<u>455</u>

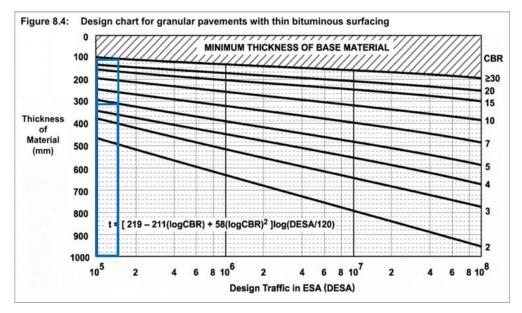
Appendix A – Granular Pavement Design Calculation

Design Traffic Calculation


20																
ID	Description	AADT (estimated)	HV average (%)	Number of HV, AADTHV at Hospital Opening	DF	N _{hvag}	LDF	R (%)	P (Years)	CGF	N _{dt} (HVAG)	N _i (HV)	N _{HV} (HV)	N _{DT} (HVAG)	ESA / HVAG	DESA
1	Blayney Hospital Redevelopment - Access Road	200	20.0%	40	0.5	2.06	1.0	1.00	40	48.89	7.35E+05	2.00E+01	3.57E+05	7.35E+05	0.44	3.23E+05
2	Blayney Hospital Redevelopment - Loading Dock	200	20.0%	40	0.5	2.06	1.0	1.00	40	48.89	2.21E+06	2.00E+01	3.57E+05	2.21E+06	0.44	9.70E+05
3	Blayney Hospital Redevelopment - Car Park	200	5.0%	10	1.0	2.06	1.0	1.00	40	48.89	3.68E+05	1.00E+01	1.78E+05	3.68E+05	0.44	1.62E+05
Not	te:															

1. AADT provided is for in and out traffic movements

2. Car park is one way only


3. A multiplier of 3 has been applied in estimating design traffic for high stress area for turning movements within the loading dock.

PAVEMENT CONFIGURATION - ACCESS ROAD									
LAYER	MIN. THICKNESS	DESIGN REQUIREMENT*	MATERIAL	BINDER RATE / COMPACTION	DESCRIPTION				
Wearing Course	-	40	AC10 C450	-	40mm AC10 C450				
Base (thickness, material, compaction)	120	120	Class 2 DGB20 Category D	102% compaction	120 mm thickness Class 2 DGB20 Category D material compacted to 102% compaction				
Sub-base (thickness, material, compaction)	230	240	DGS20	100% compaction	240 mm thickness DGS20 material compacted to 100% compaction				
TOTAL THICKNESS	350	400 mm							

Technical Memorandum

PAVEMENT CONFIGURATION - CAR PARK									
LAYER	MIN. THICKNESS	DESIGN REQUIREMENT*	MATERIAL BINDER RATE / COMPACTION DE		DESCRIPTION				
Wearing Course	-	40	AC10 C450	-	40mm AC10 C450				
Base (thickness, material, compaction)	110	110	Class 2 DGB20 Category D	102% compaction	110 mm thickness Class 2 DGB20 Category D material compacted to 102% compaction				
Sub-base (thickness, material, compaction)	210	220	DGS20	100% compaction	220 mm thickness DGS20 material compacted to 100% compaction				
TOTAL THICKNESS	320	370 mm							

Jacobs

Appendix B – Asphalt Modulus Calculation

DESIGN ASPHALT MODULUS

Project details:	Blayney Hospital Full Depth Asphalt for Loading Dock
Date:	31 March 2023
Designer:	Kai ZHeng
AC Modulus version:	6B (01 March 2018)
Design references:	Roads and Maritime Supplement to Austroads Part 2 Roads and Maritime asphalt and material specifications Austroads Part 2: Pavement Structural Design (AGPT02-17)
Inputs	
Mix type:	AC10
Binder grade:	A15E
Modulus adjustment factor:	0.75
Total binder content (by mass):	5.7%
Binder absorption:	0.3%
Binder density:	1.043 tonnes/m3
Insitu air voids:	6.0%
Combined bulk density of mineral aggregate:	2.65 tonnes/m3
Bitumen penetration at 25° C (0.1 mm):	31 (after RTFO)
Bitumen viscosity at 60° C:	970 Pa.s (after RTFO)
Loading speed:	10 km/h
WMAPT:	19.0° C

Results

Time of loading:	0.10 seconds
Bitumen T800 pen:	58.1° C
Bitumen Penetration Index:	-0.4
Binder stiffness:	32.0 MPa
Binder volume:	11.9%
Aggregate volume:	82.1%
Nominal mix modulus:	2,816 MPa
Adjusted mix modulus:	2,800 MPa
CIRCLY (k) value:	0.004475

DESIGN ASPHALT MODULUS

Project details:	Blayney Hospital Full Depth Asphalt for Loading Dock
Date:	31 March 2023
Designer:	Kai ZHeng
AC Modulus version:	6B (01 March 2018)
Design references:	Roads and Maritime Supplement to Austroads Part 2 Roads and Maritime asphalt and material specifications Austroads Part 2: Pavement Structural Design (AGPT02-17)
Inputs	
Mix type:	AC14
Binder grade:	C450
Modulus adjustment factor:	1
Total binder content (by mass):	5.2%
Binder absorption:	0.3%
Binder density:	1.043 tonnes/m3
Insitu air voids:	6.0%
Combined bulk density of mineral aggregate:	2.65 tonnes/m3
Bitumen penetration at 25° C (0.1 mm):	31 (after RTFO)
Bitumen viscosity at 60° C:	970 Pa.s (after RTFO)
Loading speed:	10 km/h
WMAPT:	19.0° C

Results

Time of loading:	0.10 seconds
Bitumen T800 pen:	58.1° C
Bitumen Penetration Index:	-0.4
Binder stiffness:	32.0 MPa
Binder volume:	10.9%
Aggregate volume:	83.1%
Nominal mix modulus:	4,228 MPa
Adjusted mix modulus:	4,000 MPa
CIRCLY (k) value:	0.003637

Appendix C – CIRCLY Output for Full Depth Asphalt

CIRCLY - Version 7.0 (1 February 2022)

Job Title: Blayney Hospital Loading Dock Pavement Design (High Stress)

Design Method: Austroads 2017

NDT (cumulative heavy vehicle axle groups over design period): 2.21E+06

Traffic Load Distribution:

ID: LTR - 04 Name: Lightly-Trafficked Roads - 04 - local access with buses ESA/HVAG: 0.443

Details of Load Groups:

Load No.	Load ID	Load Category		oad 'ype	Radius	Pressure/ Ref. stress	Exponent
1	ESA750-Full	ESA750-Full	V	ertical Forc	e 92.1	0.75	0.00
2	SAST53	SAST53	V	ertical Forc	e 102.4	0.80	0.00
Load L	ocations:						
Locati	on Load	Gear	Х	Y	Scaling	Theta	
No.	ID	No.			Factor		
1	ESA750-Full	1	-165.0	0.0	1.00E+00	0.00	
2	ESA750-Full	1	165.0	0.0	1.00E+00	0.00	
3	ESA750-Full	1	1635.0	0.0	1.00E+00	0.00	
4	ESA750-Full	1	1965.0	0.0	1.00E+00	0.00	
1	SAST53	1	0.0	0.0	1.00E+00	0.00	
2	SAST53	1	2130.0	0.0	1.00E+00	0.00	

Details of Layered System:

ID: Ash Foam Title: Asphalt over foamed bitumen surface

Layer No. 1 2	Lower i/face rough rough	Material ID AC10 A15E AC14 C450	Isotropy Iso. Iso.	Modulus (or Ev) 2.80E+03 4.00E+03	P.Ratio (or vvh) 0.40 0.40	F	Eh	vh
3	rough	SMZ CBR=15	Aniso.	7.00E+01	0.00	7.00E+01	3.50E+01	0.00
4	rough	Sub CBR5	Aniso.	5.00E+01	0.45	3.45E+01	2.50E+01	0.45
Layer	mance Rel Location		Component	Perform.	Perform.	Shift		
No.		ID		Constant	Exponent	Factor		
1	bottom	AC10 A15E	ETH	0.004475	5.000	6.0		
2	bottom	AC14 C450	ETH	0.003637	5.000	6.0		
3	top	SMZ CBR=15	ΕZΖ	0.009150	7.000			
4	top	Sub_CBR5	ΕZΖ	0.009150	7.000			

Reliability Factors: Project Reliability: Austroads 95% Layer Reliability Material No. Factor Type Type Asphalt Asphalt Subgrade (Selected Material) (Austroads 2017) Subgrade (Austroads 2017) 1 6.00 2 1.00 3 4

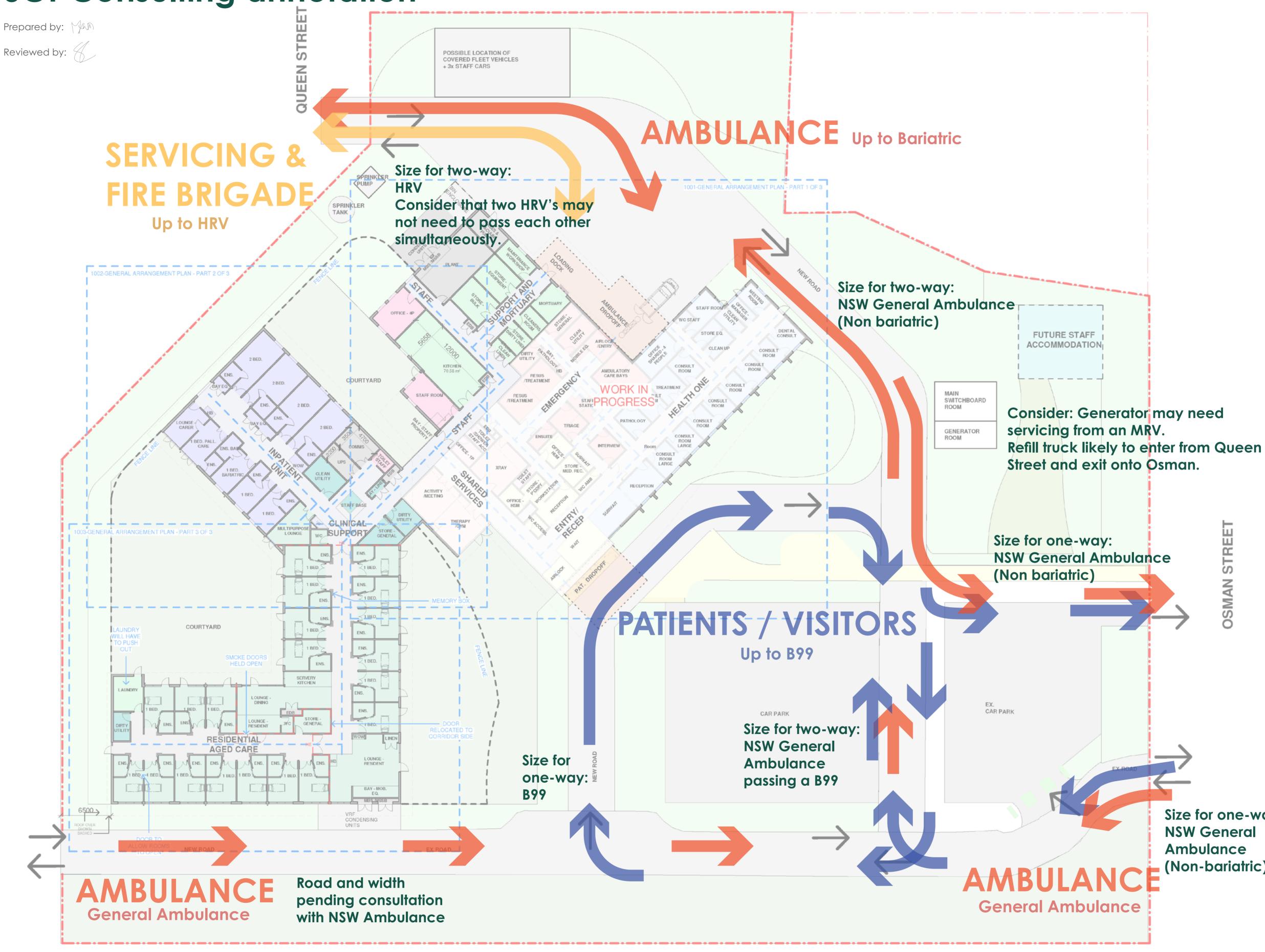
Details of Layers to be sublayered: Layer no. 3: Austroads (2004) sublayering

Strains:

Layer	Thickness	Material	Axle	Unitless	
No.		ID		Strain	
1	40.00	AC10 A15E	0.	4 3000 05	(0,
					(Compressive) (Compressive)
2	105.00	AC14 C450	51151 (33).	0.2011 00	(compressive)
			SADT(80):	2.439E-04	
			SAST(53):	2.240E-04	
3	300.00	SMZ CBR=15	CADE (80).	8.423E-04	
4	0.00	Sub CBR5	SADI(00):	0.4236-04	
-			SADT(80):	5.274E-04	

QADT:

0.000E+00


Results:

Layer No.	Thickness	Material TD	Axle Group	CDF
1	40.00	AC10 A15E		Compressive
2	105.00	AC14 C450	Total: SAST: SADT: TAST: TADT: TRDT:	9.707E-01 4.742E-01 4.880E-01 0.000E+00 8.619E-03 0.000E+00

3	300.00	SMZ CBR=15	Total:	5.488E-02
4	0.00	Sub_CBR5	Total:	2.069E-03

Appendix E. Vehicle Access Strategy Annotation

Vehicle access strategy 2022-12-21 SCT Consulting annotation

NBRSARCHITECTURE.

CORRIDOR

- EMERGENCY SERVICES
- ENTRY /RECEP /ADMIN
- HEALTHONE
- IPU
- NON CLINICAL SUPPORT
- PLANT
- RAC
- SHARED SERVICES
- STAFF AMENITIES

Ш E. ST OSMAN

BCA Consultant Blackett Maguire + Goldsmith Pty Ltd

Aaron Redfern Suite 2, 56 Hudson Street, Hamilton, NSW, 2303 +61 2 9211 7777 aaron@bmplusg.com.au

Cost Management Genus Advisory

Nam Nguyen Level 6, 201 Kent Street, Sydney, NSW, 2000 <PHONE> namnguyen@genusadvisory.com.au

ENGINEER - CIVIL/FIRE/STRU/ELEC/SECU/HYDRA/MECH Jacobs Group (Australia) Pty Ltd Mihaela Serban Level 7, 177 Pacific Highway, North Sydney, NSW, 2060 + 61 2 9032 1035 mihaela.Serban@jacobs.com

Issue No. Date

Chkd

nbrsarchitecture.com

Architect NBRSARCHITECTURE.

Sydney 61 2 9922 2344

Any form of replication of this drawing in full or in part without the written permission of NBRS+PARTNERS Pty Ltd constitutes an infringement of the copyright. Nominated Architect: Andrew Duffin NSW 5602 NBRS & Partners Pty Ltd VIC 51197 © 2022 ABN 16 002 247 565

Project Blayney HS

at 3 Osman St, Blayney NSW 2799

for Health Infrastructure

Drawing Reference

Drawing Title OVERALL FLOOR PLAN

Scale 1:250 @ A1

Revision

130607-NBRS-AR- DWG-1000 0 2.5m 5m 7.5m 10m 12.5m 15m 17.5m 20m 11:250

Size for one-way: (Non-bariatric)